Yan Sheng's site A math blog

Measure Theory (XV): The Fourier Transform on R\bb R

The Fourier transform decomposes a function into components of different frequencies. Historically, Fourier series were developed to study periodic processes and the heat equation, but Fourier analysis has found applications in diverse areas such as number theory, combinatorics, and signal processing.

The study of the Fourier transform has given rise to entire new areas of mathematics, such as harmonic analysis and functional analysis. In this post, we will only study a small part of the rigorous foundations for Fourier analysis, namely some conditions for the existence of the Fourier transform and its inverse.

The Fourier transform

Firstly, note that our definition for Lebesgue measurable and Lebesgue integrable functions extend naturally to C\bb C-valued functions: if f:RCf:\bb R\to\bb C, write f=u+ivf=u+iv with u,v:RRu,v:\bb R\to\bb R. Then we say that ff is Lebesgue measurable (resp. integrable) if both uu and vv are Lebesgue measurable (resp. integrable), and define

 ⁣fdλ= ⁣udλ+i ⁣vdλ.\int\!f\,d\lambda=\int\!u\,d\lambda+i\int\!v\,d\lambda.

Lemma: (Triangle inequality for integrals) Let f:RCf:\bb R\to\bb C be such that fL1(R)\lvert f\rvert\in L^1(\bb R). Then

 ⁣fdλ ⁣fdλ.\left|\int\!f\,d\lambda\right|\leq\int\!|f|\,d\lambda.

Proof: Choose αC\alpha\in\bb C such that α=1\lvert\alpha\rvert=1 and the first line holds:

 ⁣fdλ=α ⁣fdλ= ⁣αfdλ= ⁣Re(αf)dλ ⁣αfdλ= ⁣fdλ.   \begin{aligned} \left|\int\!f\,d\lambda\right|&=\alpha\int\!f\,d\lambda\\ &=\int\!\alpha f\,d\lambda\\ &=\int\!\Re(\alpha f)\,d\lambda\\ &\leq\int\!|\alpha f|\,d\lambda\\ &=\int\!|f|\,d\lambda.\ \qed \end{aligned}

Now for fL1(R)f\in L^1(\bb R), define the Fourier transform of ff by

f^(y)= ⁣f(x)eixydλ(x).\widehat f(y)=\int\!f(x)e^{-ixy}\,d\lambda(x).

Note that the Fourier transform is R\bb R-linear, hence C\bb C-linear; as such, there is no loss in generality if we restrict ourselves to studying the Fourier transform only on R\bb R-valued functions.

An important first example is the Gaussian function, whose Fourier transform is simply a multiple of itself.

Proposition: Let g(x)=12πex22g(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2}. Then g^(y)=ey22\widehat g(y)=e^{-\frac{y^2}2}.

Proof: By differentiation under the integral sign, converting into a Riemann integral, and integration by parts, we have

g^(y)=12π ⁣ex22eixydλ(x)g^(y)=12π ⁣yex22eixydλ(x)=i2π ⁣xex22eixydx=i2π([ex22eixy] ⁣ex22(iy)eixydx)=y2π ⁣ex22eixydx=yg^(y). \begin{aligned} \widehat g(y)&=\frac1{\sqrt{2\pi}}\int\!e^{-\frac{x^2}2}e^{-ixy}\,d\lambda(x)\\ \widehat g'(y)&=\frac1{\sqrt{2\pi}}\int\!\frac\del{\del y}e^{-\frac{x^2}2}e^{-ixy}\,d\lambda(x)\\ &=\frac i{\sqrt{2\pi}}\int_{-\infty}^\infty\!-xe^{-\frac{x^2}2}e^{-ixy}\,dx\\ &=\frac i{\sqrt{2\pi}}\left(\left[e^{-\frac{x^2}2}e^{-ixy}\right]_ {-\infty}^\infty-\int_{-\infty}^\infty\!e^{-\frac{x^2}2}(-iy)e^{-ixy}\,dx\right)\\ &=-\frac y{\sqrt{2\pi}}\int_{-\infty}^\infty\!e^{-\frac{x^2}2}e^{-ixy}\,dx\\ &=-y\widehat g(y). \end{aligned}

This differential equation has a unique solution

g^(y)=g^(0)ey22=ey22,\widehat g(y)=\widehat g(0)e^{-\frac{y^2}2}=e^{-\frac{y^2}2},

where the computation g^(0)= ⁣gdλ=1\widehat g(0)=\int\!g\,d\lambda=1 is well-known.  \qed

We now establish some properties of the Fourier transform on L1(R)L^1(\bb R).

Proposition: Let fL1(R)f\in L^1(\bb R). Then f^\widehat f is continuous and bounded, with supyf^(y)f1\sup_y\lvert\widehat f(y)\rvert\leq\|f\|_ 1.

Proof: Note that both the real and imaaginary parts of f(x)eixyf(x)e^{-ixy} are bounded in absolute value by f(x)\lvert f(x)\rvert. Hence for any sequence (yn)(y_n) converging to yy, LDCT yields

limnf^(yn)=limn ⁣f(x)eixyndλ(x)= ⁣limnf(x)eixyndλ(x)= ⁣f(x)eixydλ(x)=f^(y). \begin{aligned} \lim_{n\to\infty}\widehat f(y_n)&=\lim_{n\to\infty}\int\!f(x)e^{-ixy_n}\,d\lambda(x)\\ &=\int\!\lim_{n\to\infty}f(x)e^{-ixy_n}\,d\lambda(x)\\ &=\int\!f(x)e^{-ixy}\,d\lambda(x)\\ &=\widehat f(y). \end{aligned}

Hence f^\widehat f is continuous. Now f^(y)f1\lvert\widehat f(y)\rvert\leq\|f\|_ 1 follows from the triangle inequality for integrals.  \qed

Next we list the effects of translation and scaling of the input function on the Fourier transform. These can all be proven with a linear change of variables.

Proposition: Let fL1(R)f\in L^1(\bb R).

  1. If F(x)=f(xk)F(x)=f(x-k), then F^(y)=eikyf^(y)\widehat F(y)=e^{-iky}\widehat f(y).
  2. If G(x)=f(xk)G(x)=f(\frac xk), then G^(y)=kf^(ky)\widehat G(y)=\lvert k\rvert\widehat f(ky).
  3. If H(x)=eikxf(x)H(x)=e^{ikx}f(x), then H^(y)=f^(yk)\widehat H(y)=\widehat f(y-k).  \qed

The Fourier transform decays to zero at ±\pm\infty:

Riemann–Lebesgue lemma: Let fL1(R)f\in L^1(\bb R). Then limy±f^(y)=0\lim_{y\to\pm\infty}\widehat f(y)=0.

Proof: First we prove the statement for gCc(R)g\in C^\infty_c(\bb R). Integration by parts gives

g^(y)= ⁣g(x)eixydx=1iy([g(x)eixy]g(x)eixydx)1y ⁣g(x)dx, \begin{aligned} |\widehat g(y)|&=\left|\int_{-\infty}^\infty\!g(x)e^{-ixy}\,dx\right|\\ &=\left|-\frac1{iy}\left([g(x)e^{-ixy}]_ {-\infty}^\infty-\int_{-\infty}^\infty g'(x)e^{-ixy}\,dx\right)\right|\\ &\leq\frac1{|y|}\int\!|g'(x)|\,dx, \end{aligned}

which goes to 00 as y±y\to\pm\infty.

Fix ε>0\eps>0. Now for general fL1(R)f\in L^1(\bb R), pick gCc(R)g\in C^\infty_c(\bb R) with fg1<ε2\|f-g\|_ 1<\frac\eps2; then

f^(y)g^(y)+(fg)^(y)<ε2+fg1<ε \begin{aligned} |\widehat f(y)|&\leq|\widehat g(y)|+|\widehat{(f-g)}(y)|\\ &<\frac\eps2+\|f-g\|_ 1<\eps \end{aligned}

for large enough y\lvert y\rvert; this is what we wanted to show.  \qed

Next we see how the Fourier transform interacts with the convolution and product of two functions.

Proposition: Let f,gL1(R)f,g\in L^1(\bb R). Then:

  • fg^=f^g^\widehat{f* g}=\widehat f\widehat g; and
  •  ⁣f^gdλ= ⁣fg^dλ\int\!\widehat fg\,d\lambda=\int\!f\widehat g\,d\lambda.

Proof: By the Fubini-Tonelli theorem, we have

fg^(y)= ⁣(fg)(x)eixydλ(x)= ⁣( ⁣f(xz)g(z)dλ(z))eixydλ(x)= ⁣( ⁣f(xz)ei(xz)ydλ(x))g(z)eizydλ(z)=f^(y)g^(y), \begin{aligned} \widehat{f* g}(y)&=\int\!(f* g)(x)e^{-ixy}\,d\lambda(x)\\ &=\int\!\left(\int\!f(x-z)g(z)\,d\lambda(z)\right)e^{-ixy}\,d\lambda(x)\\ &=\int\!\left(\int\!f(x-z)e^{-i(x-z)y}\,d\lambda(x)\right)g(z)e^{-izy}\,d\lambda(z)\\ &=\widehat f(y)\widehat g(y), \end{aligned}

and

 ⁣f^gdλ= ⁣( ⁣f(x)eixydλ(x))g(y)dλ(y)= ⁣( ⁣g(y)eiyxdλ(y))f(x)dλ(x)= ⁣fg^dλ.   \begin{aligned} \int\!\widehat fg\,d\lambda&=\int\!\left(\int\!f(x)e^{-ixy}\,d\lambda(x)\right)g(y)\,d\lambda(y)\\ &=\int\!\left(\int\!g(y)e^{-iyx}\,d\lambda(y)\right)f(x)\,d\lambda(x)\\ &=\int\!f\widehat g\,d\lambda.\ \qed \end{aligned}

Fourier inversion

We now look at conditions under which we can recover a function ff from its Fourier transform f^\hat f. Our first result gives ff as an explicit formula in terms of f^\hat f, but only holds when f^\hat f is sufficiently nice (namely, when it is Lebesgue integrable).

Fourier Inversion Theorem: Let fL1(R)f\in L^1(\bb R), and suppose that f^L1(R)\widehat f\in L^1(\bb R). Then for λ\lambda-a.e. xRx\in\bb R, we have

f(x)=12π ⁣f^(y)eixydλ(y).f(x)=\frac1{2\pi}\int\!\widehat f(y)e^{ixy}\,d\lambda(y).

In other words, f(x)=12πf^^(x)f(x)=\frac1{2\pi}\widehat{\widehat f}(-x).

Proof: Let g(x)=12πex22g(x)=\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2} be the Gaussian function, and let gε(x)=1εg(xε)g_\eps(x)=\frac1\eps g(\frac x\eps). Notice that if we define

hε(x)=12πeix0xg(εx),h_\eps(x)=\frac1{\sqrt{2\pi}}e^{ix_0x}g(\eps x),

then

hε^(y)=12πεg^(yx0ε)=gε(x0y).\widehat{h_\eps}(y)=\frac1{\sqrt{2\pi}\eps}\widehat g\left(\frac{y-x_0}\eps\right)=g_\eps(x_0-y).

Hence

(fgε)(x0)= ⁣f(y)gε(x0y)dλ(y)= ⁣fhε^dλ= ⁣f^hεdλ. \begin{aligned} (f* g_\eps)(x_0)&=\int\!f(y)g_\eps(x_0-y)\,d\lambda(y)\\ &=\int\!f\widehat{h_\eps}\,d\lambda\\ &=\int\!\widehat fh_\eps\,d\lambda. \end{aligned}

Now f^hε12πf^1\lvert\widehat fh_\eps\rvert\leq\frac1{\sqrt{2\pi}}\|\widehat f\|_ 1, and

limε0+hε(x)=g(0)2πeix0x=12πeix0x,\lim_{\eps\to0^+}h_\eps(x)=\frac{g(0)}{\sqrt{2\pi}}e^{ix_0x}=\frac1{2\pi}e^{ix_0x},

so applying LDCT (to both the real and imaginary parts) gives

limε0+ ⁣f^hεdλ=12π ⁣eix0yf^(y)dλ(y).\lim_{\eps\to0^+}\int\!\widehat fh_\eps\,d\lambda=\frac1{\sqrt{2\pi}}\int\!e^{ix_0y}\widehat f(y)\,d\lambda(y).

However, since limε0+fgεf1=0\lim_{\eps\to0^+}\|f* g_\eps-f\|_ 1=0, which implies that fgεf* g_\eps converges in measure to ff as ε0+\eps\to0^+, there is a subsequence (εk)(\eps_k) converging to 00 such that

limkfgεk(x)=f(x)for λ-a.e. x,\lim_{k\to\infty}f* g_{\eps_k}(x)=f(x)\qquad\text{for }\lambda\text{-a.e. }x,

and we are done.  \qed

Fejér’s theorem

However, in general fL1(R)f\in L^1(\bb R) does not imply that f^L1(R)\widehat f\in L^1(\bb R). In this case, we can stil recover ff from f^\widehat f by a limit process.

Corollary (Fourier Summability Theorem): Let (Kε)ε>0(K_\eps)_ {\eps>0} be an approximate identity, with Kε^L1(R)\widehat{K_\eps}\in L^1(\bb R) for all ε>0\eps>0. Then for any fL1(R)Lp(R)f\in L^1(\bb R)\cap L^p(\bb R), the functions

hε(x)=12π ⁣f^(y)Kε^(y)eixydλ(y)h_\eps(x)=\frac1{2\pi}\int\!\widehat f(y)\widehat{K_\eps}(y)e^{ixy}\,d\lambda(y)

converge to ff in Lp(R)L^p(\bb R), ie.

limε0+hεfp=0.\lim_{\eps\to0^+}\|h_\eps-f\|_ p=0.

Proof: Note that fKεL1(R)Lp(R)f* K_\eps\in L^1(\bb R)\cap L^p(\bb R). By the Fourier inversion theorem, hε=fKεh_\eps=f* K_\eps λ\lambda-a.e., so

hεfp=fKεfp0.  \|h_\eps-f\|_ p=\|f* K_\eps-f\|_ p\to0.\ \qed

Next we investigate certain “windowing functions” or “kernels” given by

F(x)=12πsin2(x/2)(x/2)2,H(x)=max(1x,0).\mc F(x)=\frac1{2\pi}\frac{\sin^2(x/2)}{(x/2)^2},\qquad H(x)=\max(1-|x|,0).

The approximate identity Fε(x)=1εF(xε)\mc F_\eps(x)=\frac1\eps\mc F(\frac x\eps) is known as Fejér’s kernel.

Proposition: H^=2πF\widehat H=2\pi\mc F and F^=H\widehat{\mc F}=H.

Proof: It is clear that HL1(R)H\in L^1(\bb R), since it is continuous and has compact support. Also, since F(x)min(12π,2πx2)\lvert\mc F(x)\rvert\leq\min(\frac1{2\pi},\frac2{\pi x^2}), we also have FL1(R)\mc F\in L^1(\bb R).

Now the first equation follows from direct computation:

H^(y)= ⁣max(1y,0)eixydλ(x)=11 ⁣(1y)eixydx=201(1y)cos(xy)dx=2y([(1x)sin(xy)]01+01 ⁣sin(xy)dx)=[2y2cos(xy)]01=21cosyy2=sin2(y/2)(y/2)2=2πF(y). \begin{aligned} \widehat H(y)&=\int\!\max(1-|y|,0)e^{-ixy}\,d\lambda(x)\\ &=\int_{-1}^1\!(1-|y|)e^{-ixy}\,dx\\ &=2\int_0^1(1-y)\cos(xy)\,dx\\ &=\frac2y\left([ (1-x)\sin(xy)]_ 0^1+\int_0^1\!\sin(xy)\,dx\right)\\ &=\left[-\frac2{y^2}\cos(xy)\right]_ 0^1\\ &=2\frac{1-\cos y}{y^2}\\ &=\frac{\sin^2(y/2)}{(y/2)^2}=2\pi\mc F(y). \end{aligned}

Now the Fourier inversion formula gives H=12πH^^=F^H=\frac1{2\pi}\widehat{\widehat H}=\widehat{\mc F}, as desired.  \qed

Now applying the previous proposition to Fejér’s kernel gives:

Corollary (Fejér’s theorem): Let fL1(R)f\in L^1(\bb R). Then the functions

Hj(x)=12π[j,j] ⁣f^(y)(1yj)eixydλ(y)H_j(x)=\frac1{2\pi}\int_{[-j,j]}\!\widehat f(y)\left(1-\frac{|y|}j\right)e^{ixy}\,d\lambda(y)

converge to ff in L1(R)L^1(\bb R) as jj\to\infty, ie.

limjHjfp=0.  \lim_{j\to\infty}\|H_j-f\|_ p=0.\ \qed

Comments (0)

Be the first to comment!

Write a comment…