Yan Sheng's site A math blog

Measure Theory (XII): Product Measures

In this post, we describe the construction of a measure on the product of two measure spaces. We also relate integration in the product measure to the double integral over each measure space, in the form of Fubini’s theorem and Tonelli’s theorem.

Product measures

Let (Ω1,Σ1,μ1)(\Omega_1,\Sigma_1,\mu_1) and (Ω2,Σ2,μ2)(\Omega_2,\Sigma_2,\mu_2) be measure spaces. The family of measurable rectangles on Ω1×Ω2\Omega_1\times\Omega_2 is

R{A1×A2:A1Σ1,A2Σ2}.\mc R\coloneqq\{A_1\times A_2\,:\,A_1\in\Sigma_1,\,A_2\in\Sigma_2\}.

We now apply the Carathéodory construction on the function μ0:R[0,]\mu_0:\mc R\to[0,\infty] given by

μ0(A1×A2)=μ1(A1)μ2(A2),\mu_0(A_1\times A_2)=\mu_1(A_1)\mu_2(A_2),

obtaining first an outer measure μ:P(Ω1×Ω2)[0,]\mu^* :\mc P(\Omega_1\times\Omega_2)\to[0,\infty] by

μ(A)=inf{n=1μ0(Rn):RnR,An=1Rn},\mu^* (A)=\inf\left\{\sum_{n=1}^\infty\mu_0(R_n)\,:\,R_n\in\mc R,\,A\subseteq\bigcup_{n=1}^\infty R_n\right\},

then a measure μ:Σ[0,]\mu:\Sigma\to[0,\infty] by restricting μ\mu^* to the μ\mu^* -measurable sets

Σ={AΩ1×Ω2:μ(AS)+μ(AcS)μ(S)for all SΩ1×Ω2}. \begin{aligned} \Sigma=\{A\subseteq\Omega_1\times\Omega_2\,:\,&\mu^* (A\cap S)+\mu^* (A^c\cap S)\leq\mu^* (S)\\ &\text{for all }S\subseteq\Omega_1\times\Omega_2\}. \end{aligned}

The measure space (Ω1×Ω2,Σ,μ)(\Omega_1\times\Omega_2,\Sigma,\mu) is called the product measure space of (Ω1,Σ1,μ1)(\Omega_1,\Sigma_1,\mu_1) and (Ω2,Σ2,μ2)(\Omega_2,\Sigma_2,\mu_2), and μ\mu is called the product measure of μ1\mu_1 and μ2\mu_2. This is sometimes written as μ=μ1×μ2\mu=\mu_1\times\mu_2.

Again, since the Carathéodory construction is rather indirect, some intuitive statements require some work to prove.

Proposition: RΣ\mc R\subseteq\Sigma, ie. every measurable rectangle is μ\mu-measurable. Moreover, μ(R)=μ0(R)\mu(R)=\mu_0(R) for all RRR\in\mc R.

Proof: It suffices to show that

μ(S)μ(SR)+μ(SRc)\mu^* (S)\geq\mu^* (S\cap R)+\mu^* (S\cap R^c)

for all SΩ1×Ω2S\subseteq\Omega_1\times\Omega_2.

Consider any covering (Rk)k=1(R_k)_{k=1}^\infty of SS by measurable rectangles. Now if we write R=A×BR=A\times B and Rk=Ak×BkR_k=A_k\times B_k, then we can write RkR_k as a disjoint union as follows:

Rk=(RkR)(RkRc)=(RkR)(Ak×(Bk\B))((Ak\A)×(BkB))=RkRkRk \begin{aligned} R_k&=(R_k\cap R)\cup(R_k\cap R^c)\\ &=(R_k\cap R)\cup(A_k\times(B_k\backslash B))\cup((A_k\backslash A)\times(B_k\cap B))\\ &=R_k'\cup R_k''\cup R_k''' \end{aligned}

(this is easiest to visualise with a picture). Hence (Rk)(R_k’) and (Rk)(Rk)(R_k’’)\cup(R_k’’’) are coverings of RSR\cap S and RcSR^c\cap S by measurable rectangles, respectively.

Also, it is routine to check that μ0(Rk)=μ0(Rk)+μ0(Rk)+μ0(Rk)\mu_0(R_k)=\mu_0(R_k’)+\mu_0(R_k’’)+\mu_0(R_k’’’). Hence

k=1μ0(Rk)=k=1μ0(Rk)+k=1(μ0(Rk)+μ0(Rk))μ(RS)+μ(RcS). \begin{aligned} \sum_{k=1}^\infty\mu_0(R_k)&=\sum_{k=1}^\infty\mu_0(R_k')+\sum_{k=1}^\infty(\mu_0(R_k'')+\mu_0(R_k'''))\\ &\geq\mu^* (R\cap S)+\mu^* (R^c\cap S). \end{aligned}

Now taking infimum over all (Rk)(R_k) gives

μ(S)μ(RS)+μ(RcS),\mu^* (S)\geq\mu^* (R\cap S)+\mu^* (R^c\cap S),

as desired.  \qed

Iterated integrals

We expect that the Lebesgue integral of a function on a product measure space should have the same value as the “iterated integral” along the coordinates. In these two sections, we will show that this principle holds with very few conditions.

For the rest of this post, let (Ω1,Σ1,μ1)(\Omega_1,\Sigma_1,\mu_1) and (Ω2,Σ2,μ2)(\Omega_2,\Sigma_2,\mu_2) be complete measure spaces (ie. subsets of null sets are null), and let (Ω1×Ω2,Σ,μ)(\Omega_1\times\Omega_2,\Sigma,\mu) be their product measure space.

We say that a function f:Ω1×Ω2[,]f:\Omega_1\times\Omega_2\to[-\infty,\infty] has property (F)(F), and write f(F)f\in(F), if the following hold:

  • ff is μ\mu-integrable;
  • the function f(ω1,)f(\omega_1,-) is μ2\mu_2-integrable for μ1\mu_1-a.e. ω1Ω1\omega_1\in\Omega_1; and

  • the function f(1):Ω1(,)f^{(1)}:\Omega_1\to(-\infty,\infty) defined by

    f(1)(ω1)={Ω2 ⁣f(ω1,ω2)dμ2,if the integral exists0,otherwise f^{(1)}(\omega_1)=\begin{cases}\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2,&\text{if the integral exists}\\0,&\text{otherwise}\end{cases}

    is μ1\mu_1-integrable, and

    Ω1×Ω2 ⁣fdμ=Ω1 ⁣f(1)dμ1.\int_{\Omega_1\times\Omega_2}\!f\,d\mu=\int_{\Omega_1}\!f^{(1)}\,d\mu_1.

The last equation is usually written as

Ω1×Ω2 ⁣fdμ=Ω1 ⁣Ω2 ⁣f(ω1,ω2)dμ2dμ1.\int_{\Omega_1\times\Omega_2}\!f\,d\mu=\int_{\Omega_1}\!\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2\,d\mu_1.

Our goal will be to prove that every μ\mu-integrable function has property (F)(F). As such, we will build up functions with property (F)(F) step-by-step.

Lemma: Let RRR\in\mc R be a measurable rectangle with μ(R)<\mu(R)<\infty. Then χR(F)\chi_R\in(F).

Proof: Clearly χR\chi_R is μ\mu-integrable. If R=A×BR=A\times B with AΣ1A\in\Sigma_1 and BΣ2B\in\Sigma_2, then

χR(1)(ω1)=Ω2 ⁣f(ω1,ω2)dμ2={μ2(B),ω1A0,else. \chi_R^{(1)}(\omega_1)=\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2=\begin{cases}\mu_2(B),&\omega_1\in A\\0,&\text{else}.\end{cases}

Hence

Ω1×Ω2χRdμ=μ(R)=μ1(A)μ2(B)=Ω1χR(1)dμ1,\int_{\Omega_1\times\Omega_2}\chi_R\,d\mu=\mu(R)=\mu_1(A)\mu_2(B)=\int_{\Omega_1}\chi_R^{(1)}\,d\mu_1,

so χR\chi_R satisfies (F)(F).  \qed

Lemma: If f,g(F)f,g\in(F) and cRc\in\bb R, then cf,f+g(F)cf,\,f+g\in(F).

Proof: Clearly cfcf, f+gf+g are μ\mu-integrable. Note that (cf)(1)=cf(1)(cf)^{(1)}=cf^{(1)} holds on all of Ω1\Omega_1, and (f+g)(1)=f(1)+g(1)(f+g)^{(1)}=f^{(1)}+g^{(1)} holds μ1\mu_1-a.e.  \qed

Lemma: Let 0f1f20\leq f_1\leq f_2\leq\cdots be a sequence of μ\mu-measurable functions, converging pointwise to ff. If fn(F)f_n\in(F) for all nn and supn ⁣fndμ<\sup_n\int\!f_n\,d\mu<\infty, then f(F)f\in(F).

Proof: By MCT, fnf_n are μ\mu-integrable imply that ff is μ\mu-integrable.

Note that for fixed nn, fn(ω1,)f_n(\omega_1,-) is μ2\mu_2-measurable for all ω1\omega_1 outside some μ1\mu_1-null set SnS_n. Hence f(ω1,)f(\omega_1,-) is μ2\mu_2-measurable for all ω1\omega_1 outside nSn\bigcup_nS_n, ie. for μ1\mu_1-a.e. ω1\omega_1.

For these ω1∉nSn\omega_1\not\in\bigcup_nS_n, we have by MCT that

f(1)(ω1)=Ω2 ⁣f(ω1,ω2)dμ2=limnΩ2 ⁣fn(ω1,ω2)dμ2=limnfn(1)(ω1). \begin{aligned} f^{(1)}(\omega_1)&=\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2\\ &=\lim_{n\to\infty}\int_{\Omega_2}\!f_n(\omega_1,\omega_2)\,d\mu_2\\ &=\lim_{n\to\infty}f_n^{(1)}(\omega_1). \end{aligned}

Since this holds μ1\mu_1-a.e., we can integrate both sides and apply MCT again to get

Ω1 ⁣f(1)dμ1=Ω1limn ⁣fn(1)dμ1=limnΩ1 ⁣fn(1)dμ1=limnΩ1×Ω2fndμ=Ω1×Ω2fdμ, \begin{aligned} \int_{\Omega_1}\!f^{(1)}\,d\mu_1&=\int_{\Omega_1}\lim_{n\to\infty}\!f_n^{(1)}\,d\mu_1\\ &=\lim_{n\to\infty}\int_{\Omega_1}\!f_n^{(1)}\,d\mu_1\\ &=\lim_{n\to\infty}\int_{\Omega_1\times\Omega_2}f_n\,d\mu\\ &=\int_{\Omega_1\times\Omega_2}f\,d\mu, \end{aligned}

as desired.  \qed

Lemma: Let f1f20f_1\geq f_2\geq\cdots\geq0 be a sequence of μ\mu-measurable functions, converging pointwise to ff. If fn(F)f_n\in(F) for all nn, then f(F)f\in(F).

Proof: Note that (f1fn)(f_1-f_n) is an increasing sequence of nonnegative μ\mu-integrable functions converging to f1ff_1-f, with

supnΩ1×Ω2 ⁣(f1fn)dμΩ1×Ω2 ⁣f1dμ<. \sup_n\int_{\Omega_1\times\Omega_2}\!(f_1-f_n)\,d\mu\leq\int_{\Omega_1\times\Omega_2}\!f_1\,d\mu<\infty.

Hence by the previous Lemma, we have f1f(F)f_1-f\in(F), so f(F)f\in(F).  \qed

Lemma: Let (Rn)(R_n) be a sequence of measurable rectangles, and let F=nRnF=\bigcup_nR_n. If μ(F)<\mu(F)<\infty, then χF(F)\chi_F\in(F).

Proof: Note that every finite union of measurable rectangles can be written as a finite disjoint union of measurable rectangles. Hence if FN=n=1NRnF_N=\bigcup_{n=1}^NR_n, then χFN(F)\chi_{F_N}\in(F). Now (χFn)(\chi_{F_n}) is an increasing sequence of nonnegative μ\mu-measurable functions with limit χF\chi_F, so we are done by the Lemma above.  \qed

Lemma: Let EΣE\in\Sigma be μ\mu-null. Then χE(F)\chi_E\in(F).

Proof: For each nn, there is a set FnF_n which is the union of countably many measurable rectangles, such that EFnE\subseteq F_n and μ(Fn)<1n\mu(F_n)<\frac1n. By replacing FnF_n with k=1nFk\bigcap_{k=1}^nF_k, we may assume that F1F2EF_1\supseteq F_2\supseteq\cdots\supseteq E.

Let F=nFnF=\bigcap_nF_n. By the previous Lemma, we have χFn(F)\chi_{F_n}\in(F), so χF(F)\chi_F\in(F). Hence for μ1\mu_1-a.e. ω1\omega_1, we have

Ω1 ⁣χF(1)dμ1=Ω1×Ω2 ⁣χFdμ=0\int_{\Omega_1}\!\chi_F^{(1)}\,d\mu_1=\int_{\Omega_1\times\Omega_2}\!\chi_F\,d\mu=0

implies that

χF(1)(ω1)=Ω2 ⁣χF(ω1,ω2)dμ2=0\chi_F^{(1)}(\omega_1)=\int_{\Omega_2}\!\chi_F(\omega_1,\omega_2)\,d\mu_2=0

for μ1\mu_1-a.e. ω1\omega_1. Now 0χE(ω1,)χF(ω1,)0\leq\chi_E(\omega_1,-)\leq\chi_F(\omega_1,-), so completeness of μ2\mu_2 yields

χE(1)(ω1)=Ω2 ⁣χE(ω1,ω2)dμ2=0\chi_E^{(1)}(\omega_1)=\int_{\Omega_2}\!\chi_E(\omega_1,\omega_2)\,d\mu_2=0

on the same set of ω1\omega_1. Hence

Ω1 ⁣χE(1)dμ1=0=Ω1×Ω2 ⁣χEdμ,\int_{\Omega_1}\!\chi_E^{(1)}\,d\mu_1=0=\int_{\Omega_1\times\Omega_2}\!\chi_E\,d\mu,

as desired.  \qed

Lemma: Let EΣE\in\Sigma satisfy μ(E)<\mu(E)<\infty. Then χE(F)\chi_E\in(F).

Proof: For each nn, there is a set FnF_n which is the union of countably many measurable rectangles, such that EFnE\subseteq F_n and μ(Fn)<μ(E)+1n\mu(F_n)<\mu(E)+\frac1n. By replacing FnF_n with k=1nFk\bigcap_{k=1}^nF_k, we may assume that F1F2EF_1\supseteq F_2\supseteq\cdots\supseteq E.

Let F=nFnF=\bigcap_nF_n. By the Lemma from previously, we have χFn(F)\chi_{F_n}\in(F), so χF(F)\chi_F\in(F). Also, the set G=F\EG=F\backslash E is μ\mu-null, so χG(F)\chi_G\in(F). Thus χE=χFχG(F)\chi_E=\chi_F-\chi_G\in(F).  \qed

Fubini’s and Tonelli’s theorems

Fubini’s Theorem: Let f:Ω1×Ω2[,]f:\Omega_1\times\Omega_2\to[-\infty,\infty] be μ\mu-integrable. Then f(F)f\in(F).

Proof: First note that it is sufficient to prove the statement for f0f\geq0; for the general case, note that f=f+ff=f^+-f^-, so f+,f(F)f^+,f^-\in(F) imply f(F)f\in(F).

Take a sequence of step functions 0f1f20\leq f_1\leq f_2\leq\cdots converging pointwise to ff. Then fnff_n\leq f implies that fnf_n is μ\mu-integrable, so

fn=k=1mnan,kχEn,kf_n=\sum_{k=1}^{m_n}a_{n,k}\chi_{E_{n,k}}

for some an,k>0a_{n,k}>0 and En,kΣE_{n,k}\in\Sigma with μ(En,k)<\mu(E_{n,k})<\infty. By the previous Lemma, we have fn(F)f_n\in(F), so f(F)f\in(F), and we are done.  \qed

Of course, by swapping the roles of Ω1\Omega_1 and Ω2\Omega_2, we also get

Ω1×Ω2 ⁣fdμ=Ω1 ⁣Ω2 ⁣f(ω1,ω2)dμ2dμ1=Ω2 ⁣Ω1 ⁣f(ω1,ω2)dμ1dμ2.\int_{\Omega_1\times\Omega_2}\!f\,d\mu=\int_{\Omega_1}\!\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2\,d\mu_1=\int_{\Omega_2}\!\int_{\Omega_1}\!f(\omega_1,\omega_2)\,d\mu_1\,d\mu_2.

The main problem when trying to apply Fubini’s theorem is that the function needs to be known to be integrable on the product measure beforehand. We show that this hypothesis can be replaced with nonnegativity of the function and σ\sigma-finiteness of the measure spaces.

Tonelli’s Theorem: Let (Ω1,Σ1,μ1)(\Omega_1,\Sigma_1,\mu_1) and (Ω2,Σ2,μ2)(\Omega_2,\Sigma_2,\mu_2) be complete measure spaces which are σ\sigma-finite (ie. countable unions of sets with finite measure), and let (Ω1×Ω2,Σ,μ)(\Omega_1\times\Omega_2,\Sigma,\mu) be their product measure space. If f0f\geq0 is a μ\mu-measurable function, then:

  • the function f(ω1,)f(\omega_1,-) is μ2\mu_2-measurable for μ1\mu_1-a.e. ω1Ω1\omega_1\in\Omega_1; and
  • the function f(1):Ω1(,)f^{(1)}:\Omega_1\to(-\infty,\infty) defined by

    f(1)(ω1)={Ω2 ⁣f(ω1,ω2)dμ2,if the integral exists0,otherwise f^{(1)}(\omega_1)=\begin{cases}\int_{\Omega_2}\!f(\omega_1,\omega_2)\,d\mu_2,&\text{if the integral exists}\\0,&\text{otherwise}\end{cases}

    is μ1\mu_1-measurable, and

    Ω1×Ω2 ⁣fdμ=Ω1 ⁣f(1)dμ1.\int_{\Omega_1\times\Omega_2}\!f\,d\mu=\int_{\Omega_1}\!f^{(1)}\,d\mu_1.

Proof: Take (An)(A_n) in Σ1\Sigma_1 such that μ1(An)<\mu_1(A_n)<\infty and nAn=Ω1\bigcup_nA_n=\Omega_1, and take (Bn)(B_n) in Σ2\Sigma_2 similarly. Then Rn=An×BnRR_n=A_n\times B_n\in\mc R satisfy μ(Rn)<\mu(R_n)<\infty and nRn=Ω1×Ω2\bigcup_nR_n=\Omega_1\times\Omega_2.

Let fn=min(f,n)χRnf_n=\min(f,n)\chi_{R_n}. This is bounded above by nχRnn\chi_{R_n}, which is μ\mu-integrable, so fn(F)f_n\in(F) by Fubini’s theorem. In particular, the two given conditions in the theorem hold with ff replaced by fnf_n.

Now 0f1f20\leq f_1\leq f_2\leq\cdots, with (fn)f(f_n)\to f pointwise. If fn(ω1,)f_n(\omega_1,-) is μ2\mu_2-measurable for all ω1\omega_1 outside of a μ1\mu_1-null set SnS_n, then f(ω1,)f(\omega_1,-) is μ2\mu_2-measurable for all ω1\omega_1 outside of the μ1\mu_1-null set nSn\bigcup_nS_n.

Hence f(1)=limnfn(1)f^{(1)}=\lim_{n\to\infty}f_n^{(1)} μ1\mu_1-a.e., so f(1)f^{(1)} is μ1\mu_1-measurable, and MCT gives

Ω1 ⁣f(1)dμ1=limnΩ1 ⁣fn(1)dμ1=limnΩ1×Ω2 ⁣fndμ=Ω1×Ω2 ⁣fdμ, \begin{aligned} \int_{\Omega_1}\!f^{(1)}\,d\mu_1&=\lim_{n\to\infty}\int_{\Omega_1}\!f_n^{(1)}\,d\mu_1\\ &=\lim_{n\to\infty}\int_{\Omega_1\times\Omega_2}\!f_n\,d\mu\\ &=\int_{\Omega_1\times\Omega_2}\!f\,d\mu, \end{aligned}

as desired.  \qed

For arbitrary measurable functions ff, we may apply Tonelli’s theorem to f\lvert f\rvert to get μ\mu-integrability, then apply Fubini’s theorem. This gives the following version:

Fubini–Tonelli Theorem: Let (Ω1,Σ1,μ1)(\Omega_1,\Sigma_1,\mu_1) and (Ω2,Σ2,μ2)(\Omega_2,\Sigma_2,\mu_2) be complete σ\sigma-finite measure spaces, and let (Ω1×Ω2,Σ,μ)(\Omega_1\times\Omega_2,\Sigma,\mu) be their product measure space. If ff is a μ\mu-measurable function such that any of the integrals

Ω1×Ω2fdμ,Ω1 ⁣Ω2f(ω1,ω2)dμ2dμ1,Ω2 ⁣Ω1f(ω1,ω2)dμ1dμ2\int_{\Omega_1\times\Omega_2}|f|\,d\mu,\quad\int_{\Omega_1}\!\int_{\Omega_2}|f(\omega_1,\omega_2)|\,d\mu_2\,d\mu_1,\quad\int_{\Omega_2}\!\int_{\Omega_1}|f(\omega_1,\omega_2)|\,d\mu_1\,d\mu_2

is finite, then

Ω1×Ω2fdμ=Ω1 ⁣Ω2f(ω1,ω2)dμ2dμ1=Ω2 ⁣Ω1f(ω1,ω2)dμ1dμ2.  \int_{\Omega_1\times\Omega_2}f\,d\mu=\int_{\Omega_1}\!\int_{\Omega_2}f(\omega_1,\omega_2)\,d\mu_2\,d\mu_1=\int_{\Omega_2}\!\int_{\Omega_1}f(\omega_1,\omega_2)\,d\mu_1\,d\mu_2.\ \qed

Comments (0)

Be the first to comment!

Write a comment…