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Geometry on surfaces

@ Length and angle
(= Riemannian metric)

@ Straight lines
(= Geodesics)

@ How many geodesics are there?
(Change the question until it is interesting)
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Flat surfaces

Gaussian curvature = 0
Can be evenly covered by a flat plane
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Geodesics on flat surfaces

Geodesics on surface «» Geodesics on plane
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Counting geodesics on the cylinder

How many closed geodesics are there?
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Infinitely many
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Counting geodesics on the cylinder

How many closed geodesics are there from a point?

Exactly two
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Counting geodesics on the flat torus

How many closed geodesics are there from a point?
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Counting geodesics on the flat torus

-

One per pair of coprime integers (m, n)
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Counting geodesics on the flat torus

How many closed geodesics are there from a point
with length at most L?
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Flat torus of area 1
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Counting geodesics on the flat torus

1
P(both divisible by p) = —

p2
1
P(not both divisible by p) = 1 — 5

P (coprime) = 1—[ (1 — é)

p prime
1
c(2)
u closed geodesics from a point 1 !
with length at most L c(2) "
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Counting geodesics on the flat torus

e
with length at most L nk

)

{ closed geodesics from a point } 1

Theorem (Eskin-Masur-Zorich 2003)

Let H be the space of all flat surfaces of area 1 with prescribed
conical singularities. Then for almost every surface S in H,

{ maximal cylinders of closed geodesics

2
with length at most L } oumL’,

where ¢y, is a constant that can be explicitly computed from .

For H = {flat tori}, we can compute c¢; = %.
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Hyperbolic surfaces

Gaussian curvature = —1
Can be evenly covered by the hyperbolic plane

Poincaré half-plane model
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Geodesics on the hyperbolic plane
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Hyperbolic surfaces
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Hyperbolic surfaces

IR
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Counting geodesics on hyperbolic surfaces

How many closed geodesics are there from a point?

Sometimes, none!
(Usually, there’s one nearby.)
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Counting geodesics on hyperbolic surfaces

How many closed geodesics are there
with length at most L?

Guess: exponential in L?

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces  16/30



Counting geodesics on hyperbolic surfaces

Prime Geodesic Theorem (Sarnak 1980)

On a closed hyperbolic surface with finite area,

2 { closed geodesics } et

with length at most L L

Compare with the prime number theorem:
n

#{primes < n} ~
logn
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Another type of geodesic

(stretched)

closed
geodesics
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(stretched)

bicuspidal
geodesics
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Counting bicuspidal geodesics

How many bicuspidal geodesics are there
with length at most L?

Zero!

(stretched) (stretched)

But clearly some are “longer” than others...
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cusp region

horocycles

(stretched)



Cusp regions

Bounded by horocycle of length 2

All cusp regions are congruent

/A Wave front L Propagation
AR !
“ Horocycles 1 Geodesics

Collar theorem
The cusp regions on a hyperbolic surface are pairwise disjoint.
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Cusp regions

boring interesting boring

(stretched)

Definition
Normalised length = length of interesting part
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Main question

How many bicuspidal geodesics are there
with normalised length at most L?
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Example: the modular torus

Map repeats every 6 units

Images of cusp: Q U {0}
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Example: the modular torus

2Ing+2In3

p

q

bicuspidal geodesics with (_){ rational numbers in [0, 6) }
normalised length at most L with denominator at most n

(L=2Inn+2In3)
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Example: the modular torus

rational numbers in [0, 6) }
with denominator at most n

#
:#{0§§<6 : qsn}
= #{p,q coprime : 0 < p < 6q, q < n}
~%(n)(6n)><P(

_ 3,
@

two random integers
are coprime
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Main question

How many bicuspidal geodesics are there
with normalised length at most L?

Main Theorem

Let S be a hyperbolic surface with genus g and p punctures.
Let Cy and C» be any cusp regions on S. Then

bicuspidal geodesics from C; to C» ceel
with normalised length at most L S5
2

wherecg = ————.
°" (2g-2+p)n?
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Example: the modular torus

bicuspidal geodesics with 2
i . ~
normalised length at most L (2g-2+p)n

2
=—=¢  (g=1p=1)

L (L=2Inn+2In3)
TC
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Proof sketch

- >
:
(stretched) (stretched) (stretched)
” { returns to cusp region } _ bicuspidal geodesics with
after time L - normalised length at most L
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Proof sketch

(stretched) (stretched)

Theorem (Zagier 1981, Sarnak 1981)

Long horocycles equidistribute with respect to area.

proportion of wave front R Area(cusp region)
in cusp region Area(surface)

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces  30/30



Proof sketch

” { returns to cusp region} _ #{ bicuspidal geodesics with }

after time L h normalised length at most L

Technical
estimates
proportion of wave front Area(cusp region)
. . —
in cusp region Area(surface)
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