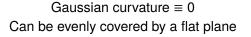
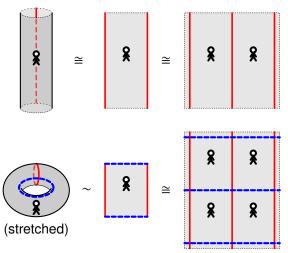


Ang Yan Sheng

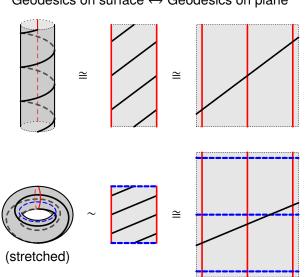
Bicuspidal Geodesics on Punctured Hyperbolic Surfaces

- Length and angle
 - (= Riemannian metric)
- Straight lines
 - (= Geodesics)
- How many _____ geodesics are there? (Change the question until it is interesting)



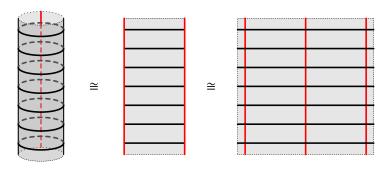


Geodesics on flat surfaces



Geodesics on surface ↔ Geodesics on plane

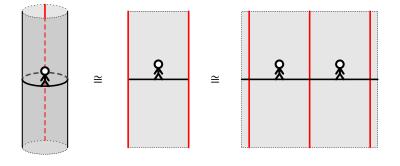
Counting geodesics on the cylinder



How many **closed** geodesics are there?

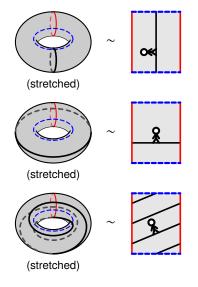
Infinitely many

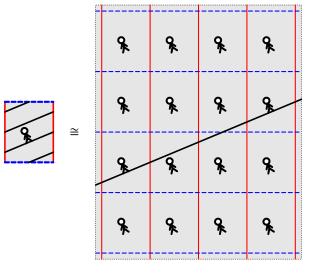
Counting geodesics on the cylinder



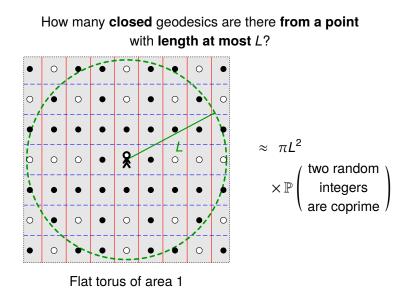
Exactly two

How many closed geodesics are there from a point?





One per pair of coprime integers (m, n)



$$\mathbb{P}(\text{both divisible by } p) = \frac{1}{p^2}$$
$$\mathbb{P}(\text{not both divisible by } p) = 1 - \frac{1}{p^2}$$
$$\mathbb{P}(\text{coprime}) = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^2}\right)$$
$$= \frac{1}{\zeta(2)}$$

$$\# \left\{ \begin{array}{c} \text{closed geodesics from a point} \\ \text{with length at most } L \end{array} \right\} \sim \frac{1}{\zeta(2)} \pi L^2$$

$$\sim \frac{1}{\zeta(2)}\pi L^2$$

Theorem (Eskin-Masur-Zorich 2003)

#

Let \mathcal{H} be the space of all flat surfaces of area 1 with prescribed conical singularities. Then for almost every surface S in \mathcal{H} ,

 $\# \left\{ \begin{array}{c} \text{maximal cylinders of closed geodesics} \\ \text{with length at most } L \end{array} \right.$

$$\sim c_{\mathcal{H}} \pi L^2$$
,

where $c_{\mathcal{H}}$ is a constant that can be explicitly computed from \mathcal{H} .

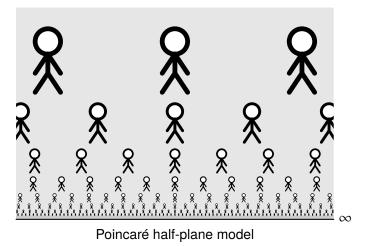
For
$$\mathcal{H} = \{$$
flat tori $\}$, we can compute $c_{\mathcal{H}} = \frac{6}{\pi^2}$.

Corollary

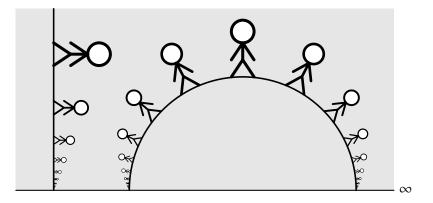
$$\zeta(2)=\frac{\pi^2}{6}.$$

Hyperbolic surfaces

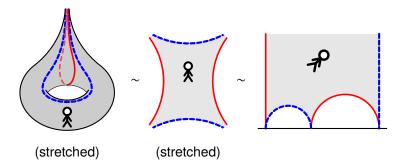
Gaussian curvature $\equiv -1$ Can be evenly covered by the hyperbolic plane



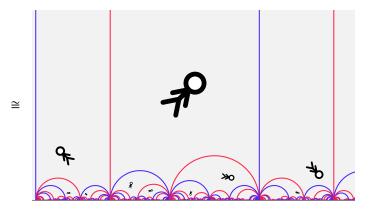
Geodesics on the hyperbolic plane



Hyperbolic surfaces

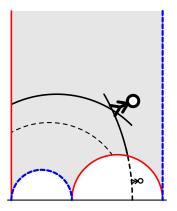


Hyperbolic surfaces



Counting geodesics on hyperbolic surfaces

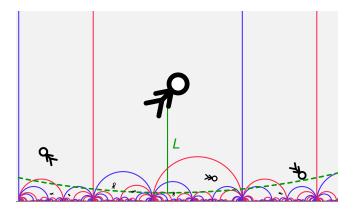
How many closed geodesics are there from a point?



Sometimes, none! (Usually, there's one nearby.)

Counting geodesics on hyperbolic surfaces

How many **closed** geodesics are there with **length at most** *L*?



Guess: exponential in L?

Prime Geodesic Theorem (Sarnak 1980)

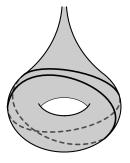
On a closed hyperbolic surface with finite area,

 $\# \left\{ \begin{array}{c} \text{closed geodesics} \\ \text{with length at most } L \end{array} \right\} \sim \frac{e^L}{L}.$

Compare with the prime number theorem:

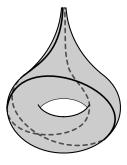
$$\#\{\text{primes} \le n\} \sim \frac{n}{\log n}$$

Another type of geodesic



(stretched)

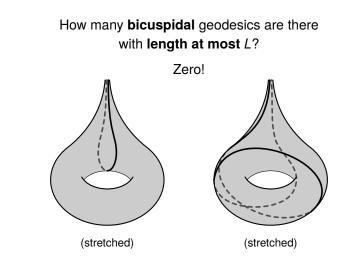
closed geodesics



(stretched)

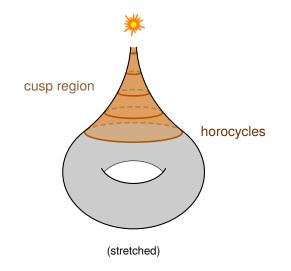
bicuspidal geodesics

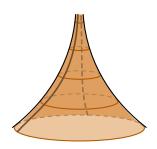
Counting bicuspidal geodesics



But clearly some are "longer" than others...

An explosion occurs at the cusp

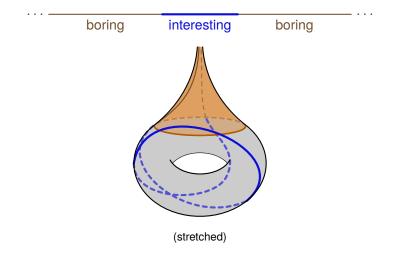




Bounded by horocycle of length 2 All cusp regions are congruent Wave front \perp Propagation \downarrow Horocycles \perp Geodesics

Collar theorem

The cusp regions on a hyperbolic surface are pairwise disjoint.



Definition

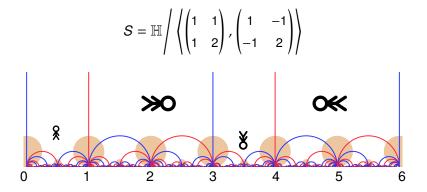
Normalised length = length of interesting part

Ang Yan Sheng

Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 23/30

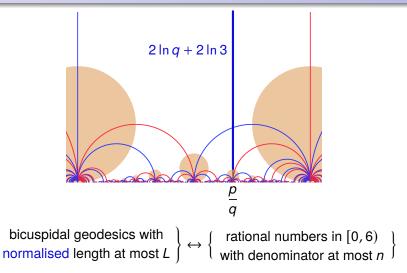
How many **bicuspidal** geodesics are there with **normalised length at most** *L*?

Example: the modular torus



Map repeats every 6 units Images of cusp: $\mathbb{Q} \cup \{\infty\}$

Example: the modular torus



 $(L = 2\ln n + 2\ln 3)$

$$\# \left\{ \begin{array}{l} \text{rational numbers in } [0, 6) \\ \text{with denominator at most } n \end{array} \right\}$$
$$= \# \left\{ 0 \le \frac{p}{q} < 6 : q \le n \right\}$$
$$= \# \left\{ p, q \text{ coprime } : 0 \le p < 6q, q \le n \right\}$$
$$\sim \frac{1}{2}(n)(6n) \times \mathbb{P} \left(\begin{array}{l} \text{two random integers} \\ \text{are coprime} \end{array} \right)$$
$$= \frac{3}{\zeta(2)}n^2.$$

How many **bicuspidal** geodesics are there with **normalised length at most** *L*?

Main Theorem

Let *S* be a hyperbolic surface with genus *g* and *p* punctures. Let *C*₁ and *C*₂ be any cusp regions on *S*. Then $\# \left\{ \begin{array}{c} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{with normalised length at most } L \end{array} \right\} \sim c_S e^L,$ where $c_S = \frac{2}{2}$

where
$$c_S = \frac{1}{(2g - 2 + p)\pi^2}$$
.

Example: the modular torus

 $\# \left\{ \begin{array}{c} \text{bicuspidal geodesics with} \\ \text{normalised length at most } L \end{array} \right\}$

$$\sim \frac{2}{(2g-2+p)\pi^2} = \frac{2}{\pi^2} e^L \qquad (g = 1, p = 1) = \frac{18}{\pi^2} n^2 \qquad (L = 2\ln n + 2\ln 3) \\ \sim \frac{3}{\zeta(2)} n^2$$

Corollary

$$\zeta(2)=\frac{\pi^2}{6}.$$

A. Eskin, H. Masur, A. Zorich.

Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants.

Publications Mathématiques de l'IHÉS, 97:61-179, 2003.

P. Sarnak.

Prime Geodesic Theorems.

Ph. D. Thesis, Stanford University, 1980.

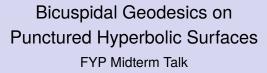
P. Sarnak.

Asymptotic Behaviour of Periodic Orbits of the Horocycle Flow and Eisenstein Series.

Comm. Pure Appl. Math., 34:719–739, 1981.

D. Zagier.

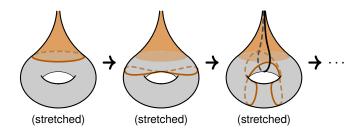
Eisenstein Series and the Riemann Zeta-Function. In *Automorphic Forms, Representation Theory and Arithmetic*, 275–301. Tata Institute, Bombay, 1981.



Ang Yan Sheng Bicuspidal Geode

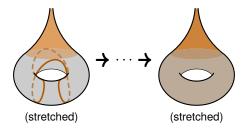
Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 30/30

Proof sketch



$$\# \left\{ \begin{array}{c} \text{returns to cusp region} \\ \text{after time } L \end{array} \right\} = \# \left\{ \begin{array}{c} \text{bicuspidal geodesics with} \\ \text{normalised length at most } L \end{array} \right.$$

Proof sketch



Theorem (Zagier 1981, Sarnak 1981)

Long horocycles equidistribute with respect to area.

 $\begin{array}{c} \text{proportion of wave front} \\ \text{in cusp region} \end{array} \rightarrow \frac{\text{Area}(\text{cusp region})}{\text{Area}(\text{surface})} \end{array}$

