

Ang Yan Sheng

Bicuspidal Geodesics on Punctured Hyperbolic Surfaces

- Length and angle
 - (= Riemannian metric)
- Straight lines
 - (= Geodesics)
- Lengths of _____ geodesics
 - How many are there with length $\leq L$?
 - What can we deduce about the surface?

Example: flat torus

Locally isometric to Euclidean plane

Some non-isometric flat tori:

Closed geodesics on flat tori

One image for each closed geodesic

Asymptotics for closed geodesics

How many ways are there to write integers up to 1000 as sums of two squares?

$$\# \left\{ (m,n) \in \mathbb{Z}^2 : m^2 + n^2 \le 1000 \right\}$$

=
$$\# \left\{ \begin{array}{l} \text{Closed geodesics in } S \\ \text{of length} \le \sqrt{1000} \end{array} \right\} \qquad \left(\begin{array}{l} S = \begin{array}{c} \text{square torus} \\ \text{of area } 1 \end{array} \right)$$

$$\approx \frac{\pi}{\text{Area}(S)} L^2 \qquad (L = \sqrt{1000})$$

pprox 1000 π

- Lift to universal cover
- Find asymptotics using geometric reasoning
- Applications to number theory (for some surfaces)

Hyperbolic geometry = –(Spherical geometry)

 $K \equiv -1$ Hyperbolic plane

Flat

- Area deficit
- Geodesics converge

- Area excess
- Geodesics diverge

The hyperbolic plane

Poincaré half-plane model

Geodesics on the hyperbolic plane

Hyperbolic surfaces

Counting geodesics

(stretched)

closed geodesics

(stretched)

bicuspidal geodesics

Asymptotics for bicuspidal geodesics

Which of these bicuspidal geodesics is longer?

Answer: both have infinite length! Need to normalise lengths

Definition

Normalised length = length of interesting part

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 15/30

Main question

Given two cusps C_1 and C_2 on a hyperbolic surface S, find asymptotics for $\# \left\{ \begin{array}{l} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{with normalised length } \leq L \end{array} \right\}$.

Guess: proportional to Area(circle of radius L)

$$\# \left\{ \begin{array}{l} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{with normalised length } \leq L \end{array} \right\} \stackrel{?}{\sim} c_S e^L$$

Plan of attack:

- Lift to universal cover
- Find asymptotics using geometric reasoning
- Applications to number theory (for some surfaces)

Step 1: Lift to universal cover

- Periodic: repeats horizontally
- Images of *C*₁ and *C*₂ are disjoint (Collar theorem)
- One image of C₂ for each bicuspidal geodesic

Normalised length \leftrightarrow size of image

Step 2: Geometric reasoning

Can't fit too many big circles in a vertical strip ~ Can't have too many short bicuspidal geodesics

Theorem $\# \left\{ \begin{array}{l} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{with normalised length } \leq L \end{array} \right\} \leq 2e^L.$

Pros:

- Elementary argument
- Works for any such arrangement of circles

Cons:

- Uses no information specific to hyperbolic surfaces
- Too weak to get correct constant

Step 2b: More geometric reasoning

Wavefronts on hyperbolic surfaces

What happens in the long run?

Wavefronts on hyperbolic surfaces

Theorem (Zagier 1981, Sarnak 1981; Eskin-McMullen 1993)

Wavefronts from cusp regions equidistribute with respect to area as $t \rightarrow \infty$.

proportion of
wavefront in
$$C_2 \rightarrow \frac{\operatorname{Area}(C_2)}{\operatorname{Area}(S)} = \frac{2}{\operatorname{Area}(S)}$$
.

proportion of wavefront in $C_2 \xrightarrow{\longrightarrow} \# \left\{ \begin{array}{c} \text{wavefront entries to } C_2 \\ \text{after time } L \end{array} \right\}$

Using Wiener's tauberian theorem, we prove:

Main estimate

Let $f : [0, \infty) \to \mathbb{R}$ be a function satisfying some technical conditions, and let $0 < \ell_1 \le \ell_2 \le \cdots$. If

$$\sum_{\ell_k \leq L} e^{-\ell_k} f(L - \ell_k) \to \alpha \quad \text{as } L \to \infty,$$

then

$$\#\{k : \ell_k \leq L\} \sim \frac{\alpha}{\int f} e^L \quad \text{as } L \to \infty.$$

Length spectrum gives information about topology of *S*:

Area(S) =
$$2(2g - 2 + p)\pi$$
,
 $g = genus$
 $p = number of cusps$

Example: the modular torus

$$\# \left\{ \begin{array}{l} \text{bicuspidal geodesics with} \\ \text{normalised length} \le L \end{array} \right\} \sim \frac{2}{\pi^2} e^L$$
$$\therefore \# \left\{ \begin{array}{l} \text{rational numbers in } [0,1) \\ \text{with denominator} \le n \end{array} \right\} \sim \frac{3}{\pi^2} n^2$$
$$\sim \frac{1}{2\zeta(2)} n^2$$

Corollary $\zeta(2) = \frac{\pi^2}{6}.$

Bonus: local asymptotics

Theorem (Hejhal 1996)

 $[\alpha, \beta]$ -segments of wavefronts equidistribute with respect to area as $t \to \infty$.

Using the same machinery, we obtain:

Theorem

 $\# \left\{ \begin{array}{l} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{lying over } [\alpha, \beta] \\ \text{with normalised length } \leq L \end{array} \right\} \sim$

$$\frac{8}{\pi\operatorname{Area}(S)}(\beta-\alpha)e^{L}$$

Corollary

 $\left\{ \begin{array}{l} \text{bicuspidal geodesics from } C_1 \text{ to } C_2 \\ \text{with normalised length} \leq L \\ \text{as } L \rightarrow \infty. \end{array} \right\} \text{ equidistribute around } C_1$

References

A. Eskin and C. McMullen.

Mixing, counting, and equidistribution in Lie groups. *Duke Math. J.*, **71**(1): 181–209, 1993.

P. Sarnak.

Asymptotic Behaviour of Periodic Orbits of the Horocycle Flow and Eisenstein Series. *Comm. Pure Appl. Math.*, **34**:719–739, 1981.

N. Wiener.

Tauberian theorems.

Ann. of Math., 33(1):1-100, 1932.

D. A. Hejhal.

On value distribution properties of automorphic functions along closed horocycles. In *XVIth Rolf Nevanlinna Colloquium*, 39–52. de Gruvter, Berlin, 1996.

D. Zagier.

Eisenstein Series and the Riemann Zeta-Function. In Automorphic Forms, Representation Theory and Arithmetic, 275–301. Tata Institute, Bombay, 1981.

Ang Yan Sheng

Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 30/30