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Geometry on surfaces

Length and angle
(= Riemannian metric)
Straight lines
(= Geodesics)
Lengths of geodesics

How many are there with length ≤ L?
What can we deduce about the surface?
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Example: flat torus

Locally isometric to Euclidean plane

∼

(stretched)

�

Some non-isometric flat tori:
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Closed geodesics on flat tori

∼

(stretched)

∼

(stretched)

∼

(stretched)
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Universal covering = map

�

One image for each closed geodesic
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Asymptotics for closed geodesics

L

#

{
closed geodesics
of length ≤ L

}
�

π

Area(S)L
2
+ O(L)
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Application: number theory

How many ways are there to write integers up to 1000
as sums of two squares?

#
{
(m, n) ∈ Z2 : m2

+ n2 ≤ 1000
}

� #

{
Closed geodesics in S
of length ≤

√
1000

} (
S �

square torus
of area 1

)
≈ π

Area(S)L
2 (L �

√
1000)

≈ 1000π
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Recap: closed geodesics on flat tori

Lift to universal cover
Find asymptotics using geometric reasoning
Applications to number theory (for some surfaces)
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Hyperbolic geometry = –(Spherical geometry)

K ≡ 0
Euclidean plane

K ≡ 1
Sphere

K ≡ −1
Hyperbolic plane

Flat Area deficit
Geodesics converge

Area excess
Geodesics diverge
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The hyperbolic plane

Poincaré half-plane model
∞
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Geodesics on the hyperbolic plane

∞

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 10 / 30



Hyperbolic surfaces

Gaussian curvature ≡ −1
Locally isometric to hyperbolic plane

∼

(stretched)

∼

(stretched)
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Hyperbolic surfaces

�
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Counting geodesics

(stretched)

closed
geodesics

X
(stretched)

bicuspidal
geodesics

?
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Asymptotics for bicuspidal geodesics

Which of these bicuspidal geodesics is longer?

(stretched) (stretched)

Answer: both have infinite length!
Need to normalise lengths
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Cusp regions

. . .
boring

. . .
boringinteresting

(stretched)

Definition
Normalised length = length of interesting part
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Goal

Main question
Given two cusps C1 and C2 on a hyperbolic surface S,

find asymptotics for #
{
bicuspidal geodesics from C1 to C2

with normalised length ≤ L

}
.

Guess: proportional to Area(circle of radius L)

#

{
bicuspidal geodesics from C1 to C2

with normalised length ≤ L

}
?∼ cSeL

Plan of attack:
Lift to universal cover
Find asymptotics using geometric reasoning
Applications to number theory (for some surfaces)
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Step 1: Lift to universal cover

(stretched)

→

Ĉ1

Ĉ2’s

Periodic: repeats horizontally
Images of C1 and C2 are disjoint (Collar theorem)
One image of C2 for each bicuspidal geodesic

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 17 / 30



Step 1: Lift to universal cover

Normalised length↔ size of image
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Step 2: Geometric reasoning

Can’t fit too many big circles in a vertical strip
 Can’t have too many short bicuspidal geodesics

Theorem

#

{
bicuspidal geodesics from C1 to C2

with normalised length ≤ L

}
≤ 2eL.

Pros:
Elementary argument
Works for any such arrangement of circles

Cons:
Uses no information specific to hyperbolic surfaces
Too weak to get correct constant
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Step 2b: More geometric reasoning

t � 0

t � 1

t � 2
t � 3

#

{
bicuspidal geodesics with
normalised length ≤ L

}
� #

{ wavefront entries to C2
after time L

}
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Wavefronts on hyperbolic surfaces

(stretched) (stretched) (stretched)

. . .

What happens in the long run?
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Wavefronts on hyperbolic surfaces

(stretched)

. . .

(stretched)

Theorem (Zagier 1981, Sarnak 1981; Eskin-McMullen 1993)
Wavefronts from cusp regions equidistribute with respect to area
as t →∞.

proportion of
wavefront in C2

→ Area(C2)
Area(S) �

2
Area(S) .
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Wavefronts on hyperbolic surfaces

#
{ wavefront entries to C2

after time L

}
� #

{
bicuspidal geodesics with
normalised length at most L

}
xy Technical

estimates

proportion of
wavefront in C2

−→ 2
Area(S)
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Step 2c: Technical estimates

proportion of
wavefront in C2

 #
{ wavefront entries to C2

after time L

}
Using Wiener’s tauberian theorem, we prove:

Main estimate
Let f : [0,∞) → R be a function satisfying some technical
conditions, and let 0 < `1 ≤ `2 ≤ · · · . If∑̀

k≤L

e−`k f (L − `k) → α as L→∞,

then
#{k : `k ≤ L} ∼ α∫

f
eL as L→∞.
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Main theorem

Theorem

#

{
bicuspidal geodesics from C1 to C2

with normalised length ≤ L

}
∼ 8
πArea(S)e

L.

Length spectrum gives information about topology of S:

Area(S) � 2(2g − 2 + p)π, g � genus
p � number of cusps

Ang Yan Sheng Bicuspidal Geodesics on Punctured Hyperbolic Surfaces 25 / 30



Example: the modular torus

0 1
4

1
3

1
2

2
3

3
4

1

#

{
bicuspidal geodesics with
normalised length ≤ L

}
� 6 ·#

{
rational numbers in [0, 1)
with denominator ≤ n

}
(L � 2 ln n + 2 ln 3)
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Example: the modular torus

#

{
bicuspidal geodesics with
normalised length ≤ L

}
∼ 2
π2 eL

∴ #

{
rational numbers in [0, 1)
with denominator ≤ n

}
∼ 3
π2 n2

∼ 1
2ζ(2)n

2

Corollary

ζ(2) � π2

6
.
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Bonus: local asymptotics

0 1α β

t � 0

t � 1

t � 2
t � 3
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Bonus: local asymptotics

Theorem (Hejhal 1996)
[α, β]-segments of wavefronts equidistribute with respect to area
as t →∞.

Using the same machinery, we obtain:

Theorem

#

{ bicuspidal geodesics from C1 to C2
lying over [α, β]

with normalised length ≤ L

}
∼ 8
πArea(S) (β − α)e

L.

Corollary{
bicuspidal geodesics from C1 to C2

with normalised length ≤ L

}
equidistribute around C1

as L→∞.
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