Bicuspidal Geodesics on Punctured Hyperbolic Surfaces FYP Final Talk

Ang Yan Sheng
e0008923@u.nus.edu

29 Mar 2019

Geometry on surfaces

- Length and angle
(= Riemannian metric)
- Straight lines
(= Geodesics)
- Lengths of geodesics
- How many are there with length $\leq L$?
- What can we deduce about the surface?

Example: flat torus

Locally isometric to Euclidean plane

(stretched)

\cong

Some non-isometric flat tori:

Closed geodesics on flat tori

Universal covering = map

One image for each closed geodesic

Asymptotics for closed geodesics

$\#\left\{\begin{array}{c}\text { closed geodesics } \\ \text { of length } \leq L\end{array}\right\}=\frac{\pi}{\operatorname{Area}(S)} L^{2}+O(L)$

Application: number theory

How many ways are there to write integers up to 1000 as sums of two squares?

$$
\begin{aligned}
& \#\left\{(m, n) \in \mathbb{Z}^{2}: m^{2}+n^{2} \leq 1000\right\} \\
= & \#\left\{\begin{array}{c}
\text { Closed geodesics in } S \\
\text { of length } \leq \sqrt{1000}
\end{array}\right\} \\
\approx & \frac{\pi}{\operatorname{Area}(S)} L^{2} \\
\approx & 1000 \pi
\end{aligned}
$$

Recap: closed geodesics on flat tori

- Lift to universal cover
- Find asymptotics using geometric reasoning
- Applications to number theory (for some surfaces)

Hyperbolic geometry = -(Spherical geometry)

$$
K \equiv 0
$$

Euclidean plane

- Flat
$K \equiv 1$
Sphere

- Area deficit
- Geodesics converge

$$
K \equiv-1
$$

Hyperbolic plane

- Area excess
- Geodesics diverge

The hyperbolic plane

Poincaré half-plane model

Geodesics on the hyperbolic plane

Hyperbolic surfaces

Gaussian curvature $\equiv-1$
Locally isometric to hyperbolic plane

Hyperbolic surfaces

Counting geodesics

(stretched)
closed
geodesics

(stretched)
bicuspidal geodesics

Asymptotics for bicuspidal geodesics

Which of these bicuspidal geodesics is longer?

(stretched)

(stretched)

Answer: both have infinite length!
Need to normalise lengths

Cusp regions

boring interesting boring

(stretched)

Definition

Normalised length = length of interesting part

Goal

Main question

Given two cusps C_{1} and C_{2} on a hyperbolic surface S, find asymptotics for $\#\left\{\begin{array}{c}\text { bicuspidal geodesics from } C_{1} \text { to } C_{2} \\ \text { with normalised length } \leq L\end{array}\right\}$.

Guess: proportional to Area(circle of radius L)
$\#\left\{\begin{array}{c}\text { bicuspidal geodesics from } C_{1} \text { to } C_{2} \\ \text { with normalised length } \leq L\end{array}\right\} \stackrel{?}{\sim} c_{S} e^{L}$
Plan of attack:

- Lift to universal cover
- Find asymptotics using geometric reasoning
- Applications to number theory (for some surfaces)

Step 1: Lift to universal cover

- Periodic: repeats horizontally
- Images of C_{1} and C_{2} are disjoint (Collar theorem)
- One image of C_{2} for each bicuspidal geodesic

Step 1: Lift to universal cover

Normalised length \leftrightarrow size of image

Step 2: Geometric reasoning

Can't fit too many big circles in a vertical strip
$n \rightarrow$ Can't have too many short bicuspidal geodesics

Theorem

$$
\#\left\{\begin{array}{c}
\text { bicuspidal geodesics from } C_{1} \text { to } C_{2} \\
\text { with normalised length } \leq L
\end{array}\right\} \leq 2 e^{L}
$$

Pros:

- Elementary argument
- Works for any such arrangement of circles

Cons:

- Uses no information specific to hyperbolic surfaces
- Too weak to get correct constant

Step 2b: More geometric reasoning

$\#\left\{\begin{array}{c}\text { bicuspidal geodesics with } \\ \text { normalised length } \leq L\end{array}\right\}=\#\left\{\begin{array}{c}\text { wavefront entries to } C_{2} \\ \text { after time } L\end{array}\right\}$

Wavefronts on hyperbolic surfaces

What happens in the long run?

Wavefronts on hyperbolic surfaces

Theorem (Zagier 1981, Sarnak 1981; Eskin-McMullen 1993)

Wavefronts from cusp regions equidistribute with respect to area as $t \rightarrow \infty$.
$\begin{gathered}\text { proportion of } \\ \text { wavefront in } C_{2}\end{gathered} \rightarrow \frac{\operatorname{Area}\left(C_{2}\right)}{\operatorname{Area}(S)}=\frac{2}{\operatorname{Area}(S)}$.

Wavefronts on hyperbolic surfaces

$\#\left\{\begin{array}{c}\text { wavefront entries to } C_{2} \\ \text { after time } L\end{array}\right\}=\#\left\{\begin{array}{c}\text { bicuspidal geodesics with } \\ \text { normalised length at most } L\end{array}\right\}$

\uparrow| Technical |
| :--- |
| estimates |

proportion of
wavefront in $C_{2}$$\quad \longrightarrow \quad \frac{2}{\operatorname{Area}(S)}$

Step 2c: Technical estimates

proportion of wavefront in $C_{2}$$\leadsto \#\left\{\begin{array}{c}\text { wavefront entries to } C_{2} \\ \text { after time } L\end{array}\right\}$

Using Wiener's tauberian theorem, we prove:

Main estimate

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function satisfying some technical conditions, and let $0<\ell_{1} \leq \ell_{2} \leq \cdots$. If

$$
\sum_{\ell_{k} \leq L} e^{-\ell_{k}} f\left(L-\ell_{k}\right) \rightarrow \alpha \text { as } L \rightarrow \infty
$$

then

$$
\#\left\{k: \ell_{k} \leq L\right\} \sim \frac{\alpha}{\int f} e^{L} \quad \text { as } L \rightarrow \infty .
$$

Main theorem

Theorem

$\#\left\{\begin{array}{c}\text { bicuspidal geodesics from } C_{1} \text { to } C_{2} \\ \text { with normalised length } \leq L\end{array}\right\} \sim \frac{8}{\pi \operatorname{Area}(S)} e^{L}$.

Length spectrum gives information about topology of S :

$$
\operatorname{Area}(S)=2(2 g-2+p) \pi, \quad \begin{aligned}
& g=\text { genus } \\
& p=\text { number of cusps }
\end{aligned}
$$

Example: the modular torus

$\#\left\{\begin{array}{c}\text { bicuspidal geodesics with } \\ \text { normalised length } \leq L\end{array}\right\}=6 \cdot \#\left\{\begin{array}{c}\text { rational numbers in }[0,1) \\ \text { with denominator } \leq n\end{array}\right\}$

$$
(L=2 \ln n+2 \ln 3)
$$

Example: the modular torus

$$
\left.\begin{array}{rl}
& \#\left\{\begin{array}{c}
\text { bicuspidal geodesics with } \\
\text { normalised length } \leq L
\end{array}\right\}
\end{array}\right\} \sim \frac{2}{\pi^{2}} e^{L}, ~ \begin{aligned}
\therefore \#\left\{\begin{array}{c}
\text { rational numbers in }[0,1) \\
\text { with denominator } \leq n
\end{array}\right\} & \sim \frac{3}{\pi^{2}} n^{2} \\
& \sim \frac{1}{2 \zeta(2)} n^{2}
\end{aligned}
$$

Corollary

$$
\zeta(2)=\frac{\pi^{2}}{6} .
$$

Bonus: local asymptotics

Bonus: local asymptotics

Theorem (Hejhal 1996)

$[\alpha, \beta]$-segments of wavefronts equidistribute with respect to area as $t \rightarrow \infty$.

Using the same machinery, we obtain:

Theorem

Corollary

$\left\{\begin{array}{c}\text { bicuspidal geodesics from } C_{1} \text { to } C_{2} \\ \text { with normalised length } \leq L\end{array}\right\}$ equidistribute around C_{1} as $L \rightarrow \infty$.

References

A. Eskin and C. McMullen.

Mixing, counting, and equidistribution in Lie groups.
Duke Math. J., 71(1): 181-209, 1993.

P. Sarnak.

Asymptotic Behaviour of Periodic Orbits of the Horocycle Flow and Eisenstein Series.
Comm. Pure Appl. Math., 34:719-739, 1981.

N. Wiener.

Tauberian theorems.
Ann. of Math., 33(1):1-100, 1932.
D. A. Hejhal.

On value distribution properties of automorphic functions along closed horocycles.
In XVIth Rolf Nevanlinna Colloquium, 39-52.
de Gruyter, Berlin, 1996.
D. Zagier.

Eisenstein Series and the Riemann Zeta-Function.
In Automorphic Forms, Representation Theory and Arithmetic, 275-301.
Tata Institute, Bombay, 1981.

Bicuspidal Geodesics on Punctured Hyperbolic Surfaces FYP Final Talk

Ang Yan Sheng
e0008923@u.nus.edu

29 Mar 2019

