Geodesics on Hyperbolic Once-Punctured Tori

 FYP Introductory TalkAng Yan Sheng
e0008923@u.nus.edu

5 Oct 2018

Geometry

- Surfaces with notion of length and angle (= Riemannian metric)
- Measure deviation from Euclidean plane eg. Area excess/deficit
(= Gaussian curvature)
- Which surfaces have constant curvature?

What can we say about them?

Surfaces of constant curvature

$$
K \equiv 0
$$

Euclidean plane

\square
$K \equiv 1$
Sphere

$$
K \equiv-1
$$

Hyperbolic plane

Drawing the hyperbolic plane

Poincaré half-plane model

Drawing the hyperbolic plane

Geodesics

- "Straight lines" on a surface
- Well-defined on surfaces with metric
- Shortest curve between two points (locally)
- Tangent vectors are parallel
- Geodesics on surfaces with constant curvature?

Geodesics on the plane

Geodesics on the sphere

Geodesics on the hyperbolic plane

Geodesics: recap

Simple: does not self-intersect
 Closed: loops periodically

	Simple		Non-simple		Dense
	Closed	Non-closed	Closed	Non-closed	
Sphere	\checkmark				
Euclidean plane		\checkmark			
Hyperbolic plane		\checkmark			

Surfaces of finite type

Theorem: Each surface above has a metric of constant curvature

Flat surfaces

Geodesics on the flat cylinder

Geodesics on flat tori

Geodesics: recap

Simple: does not self-intersect
 Closed: loops periodically

	Simple					
	Closed	Non-closed				
	Closed	Non-closed		Dense		
Sphere	\checkmark					
Euclidean plane		\checkmark				
Flat cylinder	\checkmark	\checkmark				
Flat tori	\checkmark	\checkmark				
Hyperbolic plane Hyperbolic once- punctured tori	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Geodesics on hyperbolic once-punctured tori

Questions on hyperbolic once-punctured tori

- For (simple) closed geodesics:
- Structure/parametrisation
- Enumeration (of length $\leq L$)
- Relations between lengths
- Connections to number theory
- Other types of geodesics:
- Closed + almost simple
- Both ends up the cusp
- Other hyperbolic surfaces
- Surfaces of finite type
- Surfaces with cone points

Geodesics on Hyperbolic Once-Punctured Tori

 FYP Introductory TalkAng Yan Sheng
e0008923@u.nus.edu

5 Oct 2018

Curvature

Measures the area excess/deficit at a point

$K>0$: Area deficit
$K<0$: Area excess

