# Geodesics on Hyperbolic Once-Punctured Tori FYP Introductory Talk



Ang Yan Sheng

- Surfaces with notion of length and angle (= Riemannian metric)
- Measure deviation from Euclidean plane eg. Area excess/deficit
  - (= Gaussian curvature)
- Which surfaces have constant curvature? What can we say about them?

# Surfaces of constant curvature



# Drawing the hyperbolic plane



# Drawing the hyperbolic plane



- "Straight lines" on a surface
- Well-defined on surfaces with metric
  - Shortest curve between two points (locally)
  - Tangent vectors are parallel
- Geodesics on surfaces with constant curvature?

# Geodesics on the plane



#### Geodesics on the sphere





# Geodesics on the hyperbolic plane



Simple: does not self-intersect Closed: loops periodically

|                  | Simple       |              | Noi    |            |       |
|------------------|--------------|--------------|--------|------------|-------|
|                  | Closed       | Non-closed   | Closed | Non-closed | Dense |
| Sphere           | $\checkmark$ |              |        |            |       |
| Euclidean plane  |              | $\checkmark$ |        |            |       |
| Hyperbolic plane |              | $\checkmark$ |        |            |       |

# Surfaces of finite type



Theorem: Each surface above has a metric of constant curvature



# Geodesics on the flat cylinder



### Geodesics on flat tori





Simple: does not self-intersect Closed: loops periodically

|                                    | Simple       |              | No           |              |              |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|
|                                    | Closed       | Non-closed   | Closed       | Non-closed   | Dense        |
| Sphere                             | $\checkmark$ |              |              |              |              |
| Euclidean plane                    |              | $\checkmark$ |              |              |              |
| Flat cylinder                      | $\checkmark$ | $\checkmark$ |              |              |              |
| Flat tori                          | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| Hyperbolic plane                   |              | $\checkmark$ |              |              |              |
| Hyperbolic once-<br>punctured tori | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

# Hyperbolic once-punctured tori

















# Questions on hyperbolic once-punctured tori

- For (simple) closed geodesics:
  - Structure/parametrisation
  - Enumeration (of length  $\leq L$ )
  - Relations between lengths
  - Connections to number theory
- Other types of geodesics:
  - Closed + almost simple
  - Both ends up the cusp
- Other hyperbolic surfaces
  - Surfaces of finite type
  - Surfaces with cone points

17/17

# Geodesics on Hyperbolic Once-Punctured Tori FYP Introductory Talk



#### Curvature

#### Measures the area excess/deficit at a point



K > 0: Area deficit K < 0: Area excess