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Algebraic topology is the study of algebraic objects derived from topological
spaces, invariant under homeomorphisms or homotopy equivalence. Cohomol-
ogy is a powerful family of such tools developed in the 20" century. In this report,
we cover the fundamental concepts of de Rham cohomology for smooth mani-

folds.
The material presented here essentially follows §1, 2, 4, 5 of Bott and Tu (1982),
and Ch. 4 §6 of Guillemin and Pollack (1974).

Differential forms

Let x4,...,x, denote the coordinates on R™. Recall that we may define the exte-
rior algebra O* = /\((R™)*), the R-algebra generated by dxy, ..., dx, with relations
dx; dx; = —dx; dx;. Note that

or :@Qq, with Q% =span{dx;, ---dx;, : 1 <13 <--- <ig <nh
q=0

Since QPQ9 C QP*9, O* is a graded algebra.
Let U C R™ be an open set. The differential q-forms on U are the elements of
Q4(U) = C>(U) ®r Q9, ie. any g-form can be uniquely written as

f1="Ti,,..1, € CT(U
th,...,iq dxi] ce dXiq = Zfl dXI) I Tr--051q ( ))

1<t < <ig<n et dxp = dxi, - - dxq.
=g

This gives the graded algebra (*(U) = @:‘;1 Q49(U) of differential forms on L.
(Equivalently, a g-form w on U is a smooth cross-section of the g™ exterior
power of the cotangent bundle, w : U — A*T*LL.)

Exterior derivative The exterior derivative d : Q9(U) — Q971 (U) is defined by:
- If f € Q°(U) = C*(U), then df = 3~ 2 dxy;
-Ifw= Z fI dXI, then dw = Z dfl dX].

Proposition. d is an antiderivation, ie. d(tw) = (dt)w + (—1)94B87t(dw).
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Proof. We check that this identity holds on monomials T = f; dx;, w = gj dx;. By
the product rule,

d(’fw) = d(flg]) dXI dX] = (dfl)g] dXI dX] + fl(dg]) dXI dX]
= (dt)w + (=148 r(dw),

since dxy dx; = (—1)98%dx; dxy. The result follows by linearity. O
Proposition. d? = 0.

Proof. For f € C*(U), we have

of 92f
d*f=d ( dxi> = dx; dx;.
- 0x; o X3 0X4

By equality of mixed partials (

%f  _ _9%f ; dxs —
% = %N ), and the antisymmetry dx; dx; =

—dx; dx;, all terms on the right cancel out. Hence d’f =0.

For monomials w = f; dx;, we have d?w = d(df; dx;) = (d*f;) dx;—df; d(dx;p).
Now d?f; = 0 by the above argument, and d(dx;) = 0 by direct computation.
Hence d?w = 0, and the result follows by linearity. O

Pullbacks LetU C R"™, V C R™ be open sets. Then any smoothmap f: U — V
induces a pullback map f* : C*(V) — C*(U), defined by f*(g) = g o f. We may
extend this to f* : Q*(V) — Q*(U) by

f* <Z g1 dyi1 "'dyiq> :Z(QI Of) dfi] "'dfiq.

Proposition. f* commutes with d.

Proof. By linearity, we only need to check f*d = df* for monomials:
* g agI
f*d(gr dyi, -~ dyy,) =T Za—ydyi dyy, - - - dyi,

=y <agl of) dfy dfy, - df;
- ayi a

(91 9] f) dfi] s dfiq
((grof)dfy, ---dfi,) = df*(gr dyy, - - - dyi, ). [

Forms on smooth manifolds A smooth manifold M is a Hausdorff, second-
countable topological space with an atlas {(Uy, @ «)}xeca such that {U,} is an open
cover of M, ¢4 : Uy — @«(Uy) € R™ are homeomorphisms, and the transition
functions gup = @« © (pg] t@p(UgNUp) = @o(Ux NUg) are diffeomorphisms on
R™.



The notion of a differential form carries over to smooth manifolds. In terms
of an atlas, a g-form w € Q9(M) on a smooth manifold M is a collection of g-
forms wy € Q9(@«(Uq)), which are compatible in the sense that wg = gj s wy on
@p(UsNUpg) forall &, 3. (Alternatively, we can define a g-form w on M as a smooth
cross-section of the g™ exterior power of the cotangent bundle, w : M. — A*T*M.)
The exterior derivative can then be defined by pullback:

(dw)lu, = ¢4 (dwy).

Note that all propositions above carry over to the setting of smooth manifolds;
in particular, any smooth map f : M — N between manifolds induces (via pullback
to R™) a pullback map on forms f* : Q*(N) — Q*(M), which commutes with
the exterior derivative. Hence O* can be seen as a contravariant functor on the
category of smooth manifolds.

The de Rham cohomology

A differential form w on a manifold M is called closed if dw = 0, and exact if
w = dt for some form T. Since d? = 0, all exact forms are closed. Hence we may
define the quotient vector space

HY(M) = {closed q-forms}/{exact q-forms}
= (kerdN Q9(M))/(imd N QI(M)).

This is known as the q" de Rham cohomology of M. We now list some basic proper-
ties and examples.

Basic properties For any f € C*(M), df = 0 if and only if f is locally constant,
ie. constant on each connected component. Hence H°(M) = R¥, where k is the
number of connected components of M.

Also, Q9(M) =0 = H9I(M) =0 for q > dim M.

Example: H*(R') For any 1-form w = g(x) dx on R', set f(x) = [jg(u) du.
R g=0

Then df = w, so every 1-form is exact. Hence H4(R'") = {0 o
q=1

Example: H*(S') For any exact 1-form df on S' = R/Z, we have [, df =
fg) df = f(1) — f(0) = 0. Conversely, for any 1-form w = g(x) dx on S' satisfying
[s1w =0, set f(x) = [;g(u) du; then df = w. Hence imd N Q'(S") is the kernel of
the linear functional [, : Q'(S') — R.

R q=0,1
Now kerd N Q'(S') = Q'(S"), so HI(S') = {o q _ ' by the isomorphism
q:=

theorem.



Differential complexes The structure of QQ*(M) with exterior derivative d is
captured by the notion of a differential complex (or cochain complex). In general,
a direct sum of vector spaces C = P, C? is a differential complex if there are
homomorphisms

oo e S ca 4 carl
such that d> = 0. Then the cohomology of C is the direct sum of vector spaces
H*(C) = ®q€Z H9(C), where
kerd N CH
RO = imdnCa’

A linear map f : A — B between differential complexes is a chain map if it
respects the differential operator, ie. fda = dgf. Note that chain maps induce a
linear map between the cohomologies.

In particular, if f : M — N is a smooth map between manifolds, then the pull-
back f* : Q*(N) — Q*(M) commutes with the exterior derivative, and thus is a
chain map. This induces a linear map f* : H*(N) — H*(M) between the cohomolo-
gies. Note that if f is a diffeomorphism, then f* is an isomorphism.

Proposition. Given a short exact sequence of differential complexes

0 yA——B—2-C » 0,

where f, g are chain maps, there is a long exact sequence of cohomology groups

(_> HQ‘H(A) f—#>
a*

Q]—lq(A) ", HAB) - HA(C) J

Proof. Firstly, we need to define d*.

f g
0 > Ad > B9 s Cd s 0

A

Take ¢ € ker d N C9. By surjectivity of g, there exists b € B9 with g(b) = c. Now
dc = dg(b) = g(db) = 0, so db = f(a) for some a € A9*! (since ker g = im f).
Note that f(da) = df(a) = d*b = 0, so by injectivity of f we have da = 0, ie.
ackerdnAd*T,
Moreover, for any other choice ¢/, b’, a’ in the above construction, withc —c¢’ €
im d, we have
g(b—1b') =c—c’'=dco = dg(bo) = g(dby),
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sob—b’'—dby € ker g =im f implies b—b’ —dby = f(a,) for some ap € A9. Now
fla—a')=db—db’'=d(b—b"—dby) = df(ao) = f(dao),
so by injectivity we have a — a’ = da, € im d. Hence the expression
d*(c+ (imdNCY%) =a+ (imdnAI*"

gives a well-defined linear map d* : H4(C) — H91(A).
The fact that the sequence given above is exact can be verified in a routine
manner, so we omit the details. ]

The Mayer-Vietoris sequence

Suppose that M = U UV, with U, V open. To relate the cohomology of M with
the cohomology of U and V, consider the sequence of inclusions

M U[[ViT—UunV,
Ly

where UT [V = U x{0}UV x{1}is the disjoint union, and t, Ly are inclusion maps.
Then the contravariant functor Q* yields maps

Q* (M) —— Q*(U) @ Q*(V) —= Q*(UN V),
v
each of which is a restriction of differential forms (ie. pullback induced by the
inclusion). Taking the difference of the last two maps, we get the Mayer-Vietoris
sequence

f

0— QM) = Q" (WaQ (V)3 Q*(UnV) -0

(w, 1) T — .
Proposition. The Mayer-Vietoris sequence is exact.

Proof. Since w € O*(M) is uniquely determined by w|y and wly, f is injective.

Note that (w,T) € ker g if and only if w|yrv = Tlunv. Every element of im f
satisfies this condition, since (wly)lunv = (wlv)lunv = wlunv; conversely, every
(w, T) satisfying this condition can be glued together to give a smooth form on M.
Hence ker g = im f.

Let {pu, pv} be a partition of unity of M subordinate to the open cover {U, V},
ie. pu, pv are nonnegative C* functions on M with supp(pu) C U, supp(pv) C V,
and py + pv = 1. Now for any w € Q*(U N V), we have pyw € Q*(U) and
puw € Q*(V). Hence g(—pvw, puw) = w, so g is surjective. O

Example: H*(S') We recompute the cohomology of S', now using the Mayer-
Vietoris sequence. Take the open cover of S' by two open intervals, say S’ = UUV.



Note that U NV is the union of two disjoint open intervals. Since open intervals
are diffeomorphic to R', the Mayer-Vietoris sequence for S' is as follows:

gt urrv unv
H' (—>? s 0 »0 o
Ho 7— JROR-LROR

Now for (w, ) € HO(U] [ V) (ie. w, T are constant functions on U, V respectively),
the difference T — w is constant on U N V. Hence the difference map 6 takes (w, 1)
to (T— w,T— w),sodimim d = 1 implies dim ker 6 = 1. Hence

H°(S") = ker 5 = R,
_RaR _RoR

~ kerd*  imb =R

H'(S") 2 im d*

The Poincaré lemma

We now compute the cohomology H*(R™), which will turn out to have impor-
tant consequences for how the cohomology behaves under homotopy.

Lett: R x R" — R™and s : R™ — R™ x R be the canonical projection and
inclusion maps, respectively:

R™ x R! Q*(R™ x R)
(X, t) = x
s:x > (x,0) SH,N s TH*
R™ Q*(R™)

7.[#
Theorem. The induced maps H*(R™) = H*(R™ x R'") are isomorphisms, inverse to
s#

each other.

Proof. Since tos = 1 on R™, we have s* o m* = 1 on Q*(R"), so s* o t* = 1 on
H*(R™). It remains to show that 7t* o s* = 1 on H*(R™ x R').

Note that any gq-form on R™ x R! is a linear combination of forms of the follow-
ing two types:

(I) fre* e, @ =dx; € QIR"), feC®R"xR'); or
(II) f v dt, P =dx; € QI (R"), fe C®R™xR.
Consider the linear map K on Q*(R™ x R') that sends forms of type (I) to 0, and
forms of type (II) to ( f(t)f ) . We now claim that
1—mos* =(—1)9T(dK—Kd) onQ*(R"™xR"). *)

Then 1 — 7 o s* maps closed forms to exact forms, which descend to 0 in cohomol-
ogy, som" os* = 1% = 1.



We now check (¥) for forms of type (I) and (II) respectively:
(D): (dK—Kd)(f" @) =—Kd(ft" o)

of of . *
=K ((Z o dxi + o dt) @+ fd(m (p)>

f(X) t) - f(X) O)) T

(
(1 —7m" os™)(ft ).

(I1):  dK(fr*y dt)

Kd(f *y dt)

= (—1)!
=a(([;))
O
< Jt of dxl—i—fdt) T,
of of .
K (;axl +—dt>7t1])dt>
£
ZJ a; dx; TP

= (-1)!
Oaxl
0

- (dK — Kd)(f " dt) = (=19 Tf e dt

= ( NI (1 —7* o s*)(f " dt),

since s*(dt) = d(s*t) = d(0) = 0. By linearity, (*) holds on all q-forms, as desired.[]
Hence H*(R™) = H*(R™ "), so by induction we have:

R qg=0

Corollary (Poincaré lemma). H4(R™) = H*(point) = {O »
qz1

More generally, if M is a smooth manifold then we can consider the canonical
projection and inclusion maps t: M x R = M and s : M —+ M x R'. Any atlas
{(Uy, @)} for M gives an atlas {(Uy x R', @ x 1)} for M x R'. By pulling back to
each chart and repeating the argument in the proof of the theorem, we obtain:

7'[# N . .
Corollary. The induced maps H*(M) = H*(M x R") are isomorphisms, inverse to each

S#
other.
R qg=0n—1
0 q#0,n—1
(This is true for n = 2, from the computation of H*(S').) Take two points P, P’ € S™,

Example: H*(S™) Assume that H9(S™ 1) = { for some n > 2.
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and consider the open cover S™ = U UV, with U = S™\{P}, V = S™\{P’}. Then
U~V >R and UNV ~ RM\{0} ~ S™ T x R'. Hence we have the following
Mayer-Vietoris sequence for S™:

sn uyrv unv

H™ (—>? s 0 >0 4.
H~! (—>? s 0 >R—)
)

- )

H' (—>? > 0 » 0 5=
HO ’— SROR—> R

Now the difference map 6 takes (w, T) to T—w, so dimim 6 = 1 implies dim ker § =
1. Hence

HO(S™) = ker 5 = R,
R R

1 ny ~ 3 * o~ ~ 000~
HI(S™) = imd " kerd* imb =0,
ax R —
HI(S™) = HI ' (UN V) = =0 forg>2.
0 g#mn
R q=0n . . .
Thus H9(S™) = By induction, this holds for alln > 2.
0 q#0,n.

Homotopy invariance

Let M, N be smooth manifolds. A smooth homotopy between two C* maps f, g :
Fix,t) =f(x) t>1
F(x,t) =g(x) t<0.
Whitney embedding theorem, every continuous map between two manifolds is
continuously homotopic to a C* map (cf. Bott/Tu Proposition 17.8); hence two
maps are smoothly homotopic if and only if they are (continuously) homotopic.

M—>NisaC°°mapF:M><R]—>Nsuchthat{ By the

Proposition. If f,g : M — N are homotopic, then the induced maps *, g* : H*(N) —
H*(M) are equal.

Proof. Taking F as above, let sp,s7 : M — M x R be the 0- and 1-sections respec-
tively: so(x) = (x,0), and s1(x) = (x,1). Then

' = (Fosy)" =5} o F¥,

g = (Fosy) = s‘g o F*,

But s and s* are both inverses of 7%, so they are equal. Hence * = g*. O



We say that M, N have the same smooth homotopy type if there are C* maps
f: M — Nand g : N — M such that gof is homotopic to 1y and f o g is homotopic
to 1n. By Proposition 17.8, this is equivalent to having the same homotopy type in
the usual (continuous) sense.

Corollary. If M, N have the same homotopy type, then H* (M) = H*(N).

Hence the de Rham cohomology gives us a useful way to distinguish between
homotopy classes of manifolds.

Before proceeding, we recall from differential geometry that a Riemannian metric
on M is a family of inner products (-, -), on T,M for each p € M, smooth in the
sense that if X,Y are C* vector fields on M then (X, Y) is a C* function on M.

Lemma. Every smooth manifold M admits a Riemannian metric.

Proof. For an atlas {(Uy, @)} of M, let (-, -), on U, be the pullback of the standard
inner product on @4 (Uy) € R™.

Now take a partition of unity {p.} subordinate to the open cover {U,}. Then
(y) =D & Pals )« is @ well-defined Riemannian metric on M. O

Recall that M is contractible if 1y is homotopic to some constant map, ie. M is
homotopy equivalent to a point.

Proposition. If M is a compact orientable manifold without boundary, then M is not
contractible.

Proof. Take a Riemannian metric (-,-) on M, which gives a volume form w on M.
Note that w is closed since it has maximal degree. Also, w is not exact, since if
w =dtthen0 = [,,,T=[,,w = Vol(M) > 0, contradiction. Hence H™ (M) # 0 =
H™ (point), so M is not homotopy equivalent to a point. O

The above statement also holds on non-orientable compact manifolds, by passing
to the orientable double cover of M.

Homotopy invariance can also be used to give a cohomological proof of a clas-
sic theorem in algebraic topology.

Theorem (Brouwer fixed point theorem). Let D™ be the closed unit ball in R™. Then
every continuous map f : D™ — D™ has a fixed point, ie. there exists xo € D™ with
f(x0) = f(xo).

Proof. Assume that there exists a continuous f : D™ — D™ with no fixed points.
Then for each x € D™, the ray from f(x) passing through x intersects 9D™ = S™~
at a unique point, say g(x). Then g : D™ — S™! is a continuous map.

Now if i : S*~1 < D™ is the inclusion map, then g o i = Ign1 (since g(x) = x
for x € S™1). Moreover, the continuous map F : D™ x [0,1] — D™ defined by
F(x,t) = tx + (1 — t)g(x) shows that g = i o g is homotopic to Lpn.

Thus D™ and S™~' have the same homotopy type. But D™ is contractible im-
plies H* 1(D™) =0 2 R = H"'(S™ '), which is the desired contradiction. O
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Finite dimensionality

The last result we shall prove is a criterion for the de Rham cohomology to be
tinite dimensional.

If dimM = n, an open cover {U,} of M is called a good cover if all nonempty
finite intersections Uy, N -+ - N U, are diffeomorphic to R™.

Proposition. Every manifold M has a good cover. Moreover, if M is compact, then it has
a finite good cover.

Proof. Take a Riemannian metric (-, -) on M. Recall that every geodesically convex
neighbourhood is diffeomorphic to R™, and the intersection of two geodesically
convex sets is also geodesically convex. Hence any open cover of geodesically
convex neighbourhoods about every point on M is a good cover. O

Proposition. If M has a finite good cover, then H*(M) is finite dimensional.

Proof. Consider the Mayer-Vietoris sequence
oS HITTUN V) S HIUU V) S HI(W @ HI(V) — - -

which gives HI(UU V) = kerr @ imr = im d* @ im r. Hence if H9(U), H(V) and
H9~1(U N V) are finite dimensional, then so is HI (UL U V).

Now suppose that any manifold with a good cover of cardinality at most p has
finite dimensional cohomology (this is true for p = 1, by the Poincaré lemma), and
M has a good cover {Uy,...,U,}of sizep+1. LetU =UoU---UU,_;and V = U,;
then UNV has a good cover {UyNU,,...,U,_1NU,} of size p, so the cohomologies
of U, Vand U NV are finite dimensional. Thus the cohomology of M = U U V' is
also finite dimensional, and we are done by induction. O

Conclusion

We end by sketching some connections between the de Rham theory and other
theories of cohomology.

Historically, algebraic topology was first concerned with homology, the study
of cycles and boundaries on simplicial complexes (simplicial homology), or more
generally any topological space (singular homology). Taking the dual construction
gives the singular cohomology, a topological invariant. By a theorem of de Rham,
the de Rham cohomology of a manifold is naturally isomorphic to its singular
cohomology; this implies that the de Rham cohomology is not just invariant under
diffeomorphisms, but also under homeomorphisms!

Moreover, the de Rham cohomology has the following computability property:
given a finite good cover {Uy} of M, the cohomology of M is completely deter-
mined by combinatorial data, namely which of the intersections Uy, N---NU,, are
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nonempty. This can be deduced from a systematic study of the relation between
de Rham cohomology and Cech cohomology, which is based on abstract simplicial
complexes constructed from an open cover of a topological space.

The agreement between the de Rham cohomology and other cohomology theo-
ries is not merely coincidental. In the 1940s, Eilenberg and Steenrod gave a unified
approach to the various cohomology theories, under the Eilenberg-Steenrod axioms.
They showed that any theory satisfying these axioms, which includes all the coho-
mology theories mentioned above, agree at least on all CW complexes. Hence any
such cohomolgy theory can be used interchangeably, depending on which is most
convenient given the context (simplicial cohomology for simplicial complexes, de
Rham cohomology for smooth manifolds, etc.).
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