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Algebraic topology is the study of algebraic objects derived from topological
spaces, invariant under homeomorphisms or homotopy equivalence. Cohomol-
ogy is a powerful family of such tools developed in the 20th century. In this report,
we cover the fundamental concepts of de Rham cohomology for smooth mani-
folds.

The material presented here essentially follows §1, 2, 4, 5 of Bott and Tu (1982),
and Ch. 4 §6 of Guillemin and Pollack (1974).

Differential forms

Let x1, . . . , xn denote the coordinates on Rn. Recall that we may define the exte-
rior algebraΩ∗ = ∧((Rn)∗), the R-algebra generated by dx1, . . . , dxn with relations
dxi dxj = −dxj dxi. Note that

Ω∗ =

∞⊕
q=0

Ωq, with Ωq = span{dxi1 · · ·dxiq : 1 6 i1 < · · · < iq 6 n}.

SinceΩpΩq ⊆ Ωp+q,Ω∗ is a graded algebra.
Let U ⊆ Rn be an open set. The differential q-forms on U are the elements of

Ωq(U) = C∞(U)⊗R Ω
q, ie. any q-form can be uniquely written as∑

16i1<···<iq6n

fi1,...,iq dxi1 · · ·dxiq =
∑

I⊆{1,...,n}
|I|=q

fI dxI,
fI = fi1,...,iq ∈ C∞(U),
dxI = dxi1 · · ·dxiq.

This gives the graded algebraΩ∗(U) =
⊕∞
q=1Ω

q(U) of differential forms on U.
(Equivalently, a q-form ω on U is a smooth cross-section of the qth exterior

power of the cotangent bundle,ω : U→ ∧kT∗U.)

Exterior derivative The exterior derivative d : Ωq(U)→ Ωq+1(U) is defined by:
– If f ∈ Ω0(U) = C∞(U), then df =

∑
∂f
∂xi
dxi;

– Ifω =
∑
fI dxI, then dω =

∑
dfi dxI.

Proposition. d is an antiderivation, ie. d(τω) = (dτ)ω+ (−1)degττ(dω).
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Proof. We check that this identity holds on monomials τ = fI dxI, ω = gJ dxJ. By
the product rule,

d(τω) = d(fIgJ)dxI dxJ = (dfI)gJ dxI dxJ + fI(dgJ)dxI dxJ

= (dτ)ω+ (−1)degττ(dω),

since dxk dxI = (−1)degτdxI dxk. The result follows by linearity.

Proposition. d2 = 0.

Proof. For f ∈ C∞(U), we have

d2f = d

(∑
i

∂f

∂xi
dxi

)
=
∑
i,j

∂2f

∂xj∂xi
dxj dxi.

By equality of mixed partials ( ∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

), and the antisymmetry dxi dxj =

−dxj dxi, all terms on the right cancel out. Hence d2f = 0.
For monomialsω = fI dxI, we have d2ω = d(dfI dxI) = (d2fI)dxI−dfI d(dxI).

Now d2fI = 0 by the above argument, and d(dxI) = 0 by direct computation.
Hence d2ω = 0, and the result follows by linearity.

Pullbacks Let U ⊆ Rn, V ⊆ Rm be open sets. Then any smooth map f : U→ V

induces a pullback map f∗ : C∞(V) → C∞(U), defined by f∗(g) = g ◦ f. We may
extend this to f∗ : Ω∗(V)→ Ω∗(U) by

f∗
(∑

gI dyi1 · · ·dyiq
)
=
∑

(gI ◦ f)dfi1 · · ·dfiq.

Proposition. f∗ commutes with d.

Proof. By linearity, we only need to check f∗d = df∗ for monomials:

f∗d(gI dyi1 · · ·dyiq) = f∗
(∑

i

∂gI

∂yi
dyi dyi1 · · ·dyiq

)

=
∑
i

(
∂gI

∂yi
◦ f
)
dfi dfi1 · · ·dfiq

= d(gI ◦ f)dfi1 · · ·dfiq
= d((gI ◦ f)dfi1 · · ·dfiq) = df∗(gI dyi1 · · ·dyiq).

Forms on smooth manifolds A smooth manifold M is a Hausdorff, second-
countable topological space with an atlas {(Uα, ϕα)}α∈A such that {Uα} is an open
cover of M, ϕα : Uα → ϕα(Uα) ⊆ Rn are homeomorphisms, and the transition
functions gαβ = ϕα ◦ϕ−1

β : ϕβ(Uα ∩Uβ)→ ϕα(Uα ∩Uβ) are diffeomorphisms on
Rn.
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The notion of a differential form carries over to smooth manifolds. In terms
of an atlas, a q-form ω ∈ Ωq(M) on a smooth manifold M is a collection of q-
forms ωα ∈ Ωq(ϕα(Uα)), which are compatible in the sense that ωβ = g∗αβωα on
ϕβ(Uα∩Uβ) for allα,β. (Alternatively, we can define a q-formω onM as a smooth
cross-section of the qth exterior power of the cotangent bundle, ω :M→ ∧kT∗M.)
The exterior derivative can then be defined by pullback:

(dω)|Uα = ϕ∗α(dωα).

Note that all propositions above carry over to the setting of smooth manifolds;
in particular, any smooth map f :M→ N between manifolds induces (via pullback
to Rn) a pullback map on forms f∗ : Ω∗(N) → Ω∗(M), which commutes with
the exterior derivative. Hence Ω∗ can be seen as a contravariant functor on the
category of smooth manifolds.

The de Rham cohomology

A differential form ω on a manifold M is called closed if dω = 0, and exact if
ω = dτ for some form τ. Since d2 = 0, all exact forms are closed. Hence we may
define the quotient vector space

Hq(M) = {closed q-forms}/{exact q-forms}

= (kerd ∩Ωq(M))/(imd ∩Ωq(M)).

This is known as the qth de Rham cohomology of M. We now list some basic proper-
ties and examples.

Basic properties For any f ∈ C∞(M), df = 0 if and only if f is locally constant,
ie. constant on each connected component. Hence H0(M) = Rk, where k is the
number of connected components ofM.

Also,Ωq(M) = 0 =⇒ Hq(M) = 0 for q > dimM.

Example: H∗(R1) For any 1-form ω = g(x)dx on R1, set f(x) =
∫x
0
g(u)du.

Then df = ω, so every 1-form is exact. Hence Hq(R1) =

{
R q = 0

0 q > 1.

Example: H∗(S1) For any exact 1-form df on S1 = R/Z, we have
∫
S1
df =∫1

0
df = f(1) − f(0) = 0. Conversely, for any 1-form ω = g(x)dx on S1 satisfying∫
S1
ω = 0, set f(x) =

∫x
0
g(u)du; then df = ω. Hence imd ∩Ω1(S1) is the kernel of

the linear functional
∫
S1

: Ω1(S1)→ R.

Now kerd ∩Ω1(S1) = Ω1(S1), so Hq(S1) =

{
R q = 0, 1

0 q > 2
by the isomorphism

theorem.

3



Differential complexes The structure of Ω∗(M) with exterior derivative d is
captured by the notion of a differential complex (or cochain complex). In general,
a direct sum of vector spaces C =

⊕
q∈ZC

q is a differential complex if there are
homomorphisms

· · · → Cq−1
d→ Cq

d→ Cq+1 → · · ·
such that d2 = 0. Then the cohomology of C is the direct sum of vector spaces
H∗(C) =

⊕
q∈ZH

q(C), where

Hq(C) =
kerd ∩ Cq

imd ∩ Cq
.

A linear map f : A → B between differential complexes is a chain map if it
respects the differential operator, ie. fdA = dBf. Note that chain maps induce a
linear map between the cohomologies.

In particular, if f : M → N is a smooth map between manifolds, then the pull-
back f∗ : Ω∗(N) → Ω∗(M) commutes with the exterior derivative, and thus is a
chain map. This induces a linear map f# : H∗(N)→ H∗(M) between the cohomolo-
gies. Note that if f is a diffeomorphism, then f# is an isomorphism.

Proposition. Given a short exact sequence of differential complexes

0 A B C 0
f g

,

where f, g are chain maps, there is a long exact sequence of cohomology groups

Hq+1(A) · · ·

Hq(A) Hq(B) Hq(C)

f#

f# g#

d∗

Proof. Firstly, we need to define d∗.

0 Aq+1 Bq+1 Cq+1 0

0 Aq Bq Cq 0

f g

f g

d d

Take c ∈ kerd ∩ Cq. By surjectivity of g, there exists b ∈ Bq with g(b) = c. Now
dc = dg(b) = g(db) = 0, so db = f(a) for some a ∈ Aq+1 (since kerg = im f).
Note that f(da) = df(a) = d2b = 0, so by injectivity of f we have da = 0, ie.
a ∈ kerd ∩Aq+1.

Moreover, for any other choice c ′, b ′, a ′ in the above construction, with c− c ′ ∈
imd, we have

g(b− b ′) = c− c ′ = dc0 = dg(b0) = g(db0),
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so b−b ′−db0 ∈ kerg = im f implies b−b ′−db0 = f(a0) for some a0 ∈ Aq. Now

f(a− a ′) = db− db ′ = d(b− b ′ − db0) = df(a0) = f(da0),

so by injectivity we have a− a ′ = da0 ∈ imd. Hence the expression

d∗(c+ (imd ∩ Cq)) = a+ (imd ∩Aq+1)

gives a well-defined linear map d∗ : Hq(C)→ Hq+1(A).
The fact that the sequence given above is exact can be verified in a routine

manner, so we omit the details.

The Mayer-Vietoris sequence

Suppose that M = U ∪ V , with U,V open. To relate the cohomology of M with
the cohomology of U and V , consider the sequence of inclusions

M U
∐
V U ∩ V

ιV

ιU
,

whereU
∐
V = U×{0}∪V×{1} is the disjoint union, and ιU, ιV are inclusion maps.

Then the contravariant functorΩ∗ yields maps

Ω∗(M) Ω∗(U)⊕Ω∗(V) Ω∗(U ∩ V)
ι∗U

ι∗V

,

each of which is a restriction of differential forms (ie. pullback induced by the
inclusion). Taking the difference of the last two maps, we get the Mayer-Vietoris
sequence

0→ Ω∗(M)
f→ Ω∗(U)⊕Ω∗(V) g→ Ω∗(U ∩ V)→ 0

(ω, τ) 7→ τ−ω.

Proposition. The Mayer-Vietoris sequence is exact.

Proof. Sinceω ∈ Ω∗(M) is uniquely determined byω|U andω|V , f is injective.
Note that (ω, τ) ∈ kerg if and only if ω|U∩V = τ|U∩V . Every element of im f

satisfies this condition, since (ω|U)|U∩V = (ω|V)|U∩V = ω|U∩V ; conversely, every
(ω, τ) satisfying this condition can be glued together to give a smooth form onM.
Hence kerg = im f.

Let {ρU, ρV } be a partition of unity of M subordinate to the open cover {U,V},
ie. ρU, ρV are nonnegative C∞ functions on M with supp(ρU) ⊆ U, supp(ρV) ⊆ V ,
and ρU + ρV = 1. Now for any ω ∈ Ω∗(U ∩ V), we have ρVω ∈ Ω∗(U) and
ρUω ∈ Ω∗(V). Hence g(−ρVω, ρUω) = ω, so g is surjective.

Example: H∗(S1) We recompute the cohomology of S1, now using the Mayer-
Vietoris sequence. Take the open cover of S1 by two open intervals, say S1 = U∪V .
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Note that U ∩ V is the union of two disjoint open intervals. Since open intervals
are diffeomorphic to R1, the Mayer-Vietoris sequence for S1 is as follows:

S1 U
∐
V U ∩ V

H1 ? 0 0

H0 ? R⊕ R R⊕ Rδ

d∗

Now for (ω, τ) ∈ H0(U
∐
V) (ie. ω, τ are constant functions on U,V respectively),

the difference τ−ω is constant on U ∩ V . Hence the difference map δ takes (ω, τ)
to (τ−ω, τ−ω), so dim im δ = 1 implies dim ker δ = 1. Hence

H0(S1) ∼= ker δ ∼= R,

H1(S1) ∼= imd∗ ∼=
R⊕ R
kerd∗

∼=
R⊕ R
im δ

∼= R.

The Poincaré lemma

We now compute the cohomology H∗(Rn), which will turn out to have impor-
tant consequences for how the cohomology behaves under homotopy.

Let π : Rn × R1 → Rn and s : Rn → Rn × R1 be the canonical projection and
inclusion maps, respectively:

π : (x, t) 7→ x

s : x 7→ (x, 0)

Rn × R1 Ω∗(Rn × R1)

Rn Ω∗(Rn)

π s∗s π∗

Theorem. The induced maps H∗(Rn)
π#

−⇀↽−
s#
H∗(Rn × R1) are isomorphisms, inverse to

each other.

Proof. Since π ◦ s = 1 on Rn, we have s∗ ◦ π∗ = 1 on Ω∗(Rn), so s# ◦ π# = 1 on
H∗(Rn). It remains to show that π# ◦ s# = 1 on H∗(Rn × R1).

Note that any q-form on Rn×R1 is a linear combination of forms of the follow-
ing two types:

(I) f π∗ϕ, ϕ = dxI ∈ Ωq(Rn), f ∈ C∞(Rn × R1); or

(II) f π∗ψdt, ψ = dxJ ∈ Ωq−1(Rn), f ∈ C∞(Rn × R1).

Consider the linear map K on Ω∗(Rn × R1) that sends forms of type (I) to 0, and
forms of type (II) to (

∫t
0
f)π∗ψ. We now claim that

1− π∗ ◦ s∗ = (−1)q−1(dK− Kd) onΩ∗(Rn × R1). (*)

Then 1−π∗ ◦ s∗ maps closed forms to exact forms, which descend to 0 in cohomol-
ogy, so π# ◦ s# = 1

# = 1.
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We now check (*) for forms of type (I) and (II) respectively:

(I) : (dK− Kd)(f π∗ϕ) = −Kd(f π∗ϕ)

= −K

((∑
i

∂f

∂xi
dxi +

∂f

∂t
dt

)
π∗ϕ+ f d(π∗ϕ)

)

= −K

(
(−1)q

∂f

∂t
π∗ϕdt

)
= (−1)q−1

∫ t
0

∂f

∂t
π∗ϕ

= (−1)q−1(f(x, t) − f(x, 0))π∗ϕ

= (−1)q−1(1− π∗ ◦ s∗)(f π∗ϕ).

(II) : dK(f π∗ψdt) = d

((∫ t
0

f

)
π∗ψ

)
=

(∑
i

∫ t
0

∂f

∂xi
dxi + f dt

)
π∗ψ,

Kd(f π∗ψdt) = K

((∑
i

∂f

∂xi
dxi +

∂f

∂t
dt

)
π∗ψdt

)

=
∑
i

∫ t
0

∂f

∂xi
dxi π

∗ψ

∴ (dK− Kd)(f π∗ψdt) = (−1)q−1f π∗ψdt

= (−1)q−1(1− π∗ ◦ s∗)(f π∗ψdt),

since s∗(dt) = d(s∗t) = d(0) = 0. By linearity, (*) holds on all q-forms, as desired.

Hence H∗(Rn) = H∗(Rn+1), so by induction we have:

Corollary (Poincaré lemma). Hq(Rn) = H∗(point) =

{
R q = 0

0 q > 1.

More generally, if M is a smooth manifold then we can consider the canonical
projection and inclusion maps π : M × R1 → M and s : M → M × R1. Any atlas
{(Uα, ϕα)} forM gives an atlas {(Uα×R1, ϕα× 1)} forM×R1. By pulling back to
each chart and repeating the argument in the proof of the theorem, we obtain:

Corollary. The induced mapsH∗(M)
π#

−⇀↽−
s#
H∗(M×R1) are isomorphisms, inverse to each

other.

Example: H∗(Sn) Assume that Hq(Sn−1) =

{
R q = 0, n− 1

0 q 6= 0, n− 1
for some n > 2.

(This is true forn = 2, from the computation ofH∗(S1).) Take two points P, P ′ ∈ Sn,
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and consider the open cover Sn = U ∪ V , with U = Sn\{P}, V = Sn\{P ′}. Then
U ' V ' Rn, and U ∩ V ' Rn\{0} ' Sn−1 × R1. Hence we have the following
Mayer-Vietoris sequence for Sn:

Sn U
∐
V U ∩ V

Hn ? 0 0

Hn−1 ? 0 R
... · · ·

H1 ? 0 0

H0 ? R⊕ R R

d∗

δ

d∗

Now the difference map δ takes (ω, τ) to τ−ω, so dim im δ = 1 implies dim ker δ =
1. Hence

H0(Sn) ∼= ker δ ∼= R,

H1(Sn) ∼= imd∗ ∼=
R

kerd∗
∼=

R
im δ

∼= 0,

Hq(Sn)
d∗

∼= Hq−1(U ∩ V) =

{
R q = n

0 q 6= n
for q > 2.

Thus Hq(Sn) =

{
R q = 0, n

0 q 6= 0, n.
By induction, this holds for all n > 2.

Homotopy invariance

LetM,N be smooth manifolds. A smooth homotopy between two C∞ maps f, g :

M → N is a C∞ map F : M × R1 → N such that

{
F(x, t) = f(x) t > 1

F(x, t) = g(x) t 6 0.
By the

Whitney embedding theorem, every continuous map between two manifolds is
continuously homotopic to a C∞ map (cf. Bott/Tu Proposition 17.8); hence two
maps are smoothly homotopic if and only if they are (continuously) homotopic.

Proposition. If f, g : M → N are homotopic, then the induced maps f#, g# : H∗(N) →
H∗(M) are equal.

Proof. Taking F as above, let s0, s1 : M → M × R1 be the 0- and 1-sections respec-
tively: s0(x) = (x, 0), and s1(x) = (x, 1). Then

f# = (F ◦ s1)# = s#
1 ◦ F#,

g# = (F ◦ s0)# = s#
0 ◦ F#.

But s#
0 and s#

1 are both inverses of π#, so they are equal. Hence f# = g#.
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We say that M,N have the same smooth homotopy type if there are C∞ maps
f :M→ N and g : N→M such that g◦f is homotopic to 1M and f◦g is homotopic
to 1N. By Proposition 17.8, this is equivalent to having the same homotopy type in
the usual (continuous) sense.

Corollary. IfM,N have the same homotopy type, then H∗(M) ∼= H∗(N).

Hence the de Rham cohomology gives us a useful way to distinguish between
homotopy classes of manifolds.

Before proceeding, we recall from differential geometry that a Riemannian metric
on M is a family of inner products 〈·, ·〉p on TpM for each p ∈ M, smooth in the
sense that if X, Y are C∞ vector fields onM then 〈X, Y〉 is a C∞ function onM.

Lemma. Every smooth manifoldM admits a Riemannian metric.

Proof. For an atlas {(Uα, ϕα)} ofM, let 〈·, ·〉α on Uα be the pullback of the standard
inner product on ϕα(Uα) ⊆ Rn.

Now take a partition of unity {ρα} subordinate to the open cover {Uα}. Then
〈·, ·〉 =

∑
α ρα〈·, ·〉α is a well-defined Riemannian metric onM.

Recall that M is contractible if 1M is homotopic to some constant map, ie. M is
homotopy equivalent to a point.

Proposition. If M is a compact orientable manifold without boundary, then M is not
contractible.

Proof. Take a Riemannian metric 〈·, ·〉 on M, which gives a volume form ω on M.
Note that ω is closed since it has maximal degree. Also, ω is not exact, since if
ω = dτ then 0 =

∫
∂M
τ =
∫
M
ω = Vol(M) > 0, contradiction. Hence Hn(M) 6= 0 =

Hn(point), soM is not homotopy equivalent to a point.

The above statement also holds on non-orientable compact manifolds, by passing
to the orientable double cover ofM.

Homotopy invariance can also be used to give a cohomological proof of a clas-
sic theorem in algebraic topology.

Theorem (Brouwer fixed point theorem). Let Dn be the closed unit ball in Rn. Then
every continuous map f : Dn → Dn has a fixed point, ie. there exists x0 ∈ Dn with
f(x0) = f(x0).

Proof. Assume that there exists a continuous f : Dn → Dn with no fixed points.
Then for each x ∈ Dn, the ray from f(x) passing through x intersects ∂Dn = Sn−1

at a unique point, say g(x). Then g : Dn → Sn−1 is a continuous map.
Now if i : Sn−1 ↪→ Dn is the inclusion map, then g ◦ i = 1Sn−1 (since g(x) = x

for x ∈ Sn−1). Moreover, the continuous map F : Dn × [0, 1] → Dn defined by
F(x, t) = tx+ (1− t)g(x) shows that g = i ◦ g is homotopic to 1Dn .

Thus Dn and Sn−1 have the same homotopy type. But Dn is contractible im-
plies Hn−1(Dn) = 0 6∼= R = Hn−1(Sn−1), which is the desired contradiction.
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Finite dimensionality

The last result we shall prove is a criterion for the de Rham cohomology to be
finite dimensional.

If dimM = n, an open cover {Uα} of M is called a good cover if all nonempty
finite intersections Uα0 ∩ · · · ∩Uαp are diffeomorphic to Rn.

Proposition. Every manifoldM has a good cover. Moreover, ifM is compact, then it has
a finite good cover.

Proof. Take a Riemannian metric 〈·, ·〉 on M. Recall that every geodesically convex
neighbourhood is diffeomorphic to Rn, and the intersection of two geodesically
convex sets is also geodesically convex. Hence any open cover of geodesically
convex neighbourhoods about every point onM is a good cover.

Proposition. IfM has a finite good cover, then H∗(M) is finite dimensional.

Proof. Consider the Mayer-Vietoris sequence

· · · → Hq−1(U ∩ V) d
∗
→ Hq(U ∪ V) r→ Hq(U)⊕Hq(V)→ · · · ,

which gives Hq(U ∪ V) ∼= ker r⊕ im r ∼= imd∗ ⊕ im r. Hence if Hq(U), Hq(V) and
Hq−1(U ∩ V) are finite dimensional, then so is Hq(U ∪ V).

Now suppose that any manifold with a good cover of cardinality at most p has
finite dimensional cohomology (this is true for p = 1, by the Poincaré lemma), and
M has a good cover {U0, . . . , Up} of size p+1. LetU = U0∪· · ·∪Up−1 and V = Up;
thenU∩V has a good cover {U0∩Up, . . . , Up−1∩Up} of size p, so the cohomologies
of U, V and U ∩ V are finite dimensional. Thus the cohomology of M = U ∪ V is
also finite dimensional, and we are done by induction.

Conclusion

We end by sketching some connections between the de Rham theory and other
theories of cohomology.

Historically, algebraic topology was first concerned with homology, the study
of cycles and boundaries on simplicial complexes (simplicial homology), or more
generally any topological space (singular homology). Taking the dual construction
gives the singular cohomology, a topological invariant. By a theorem of de Rham,
the de Rham cohomology of a manifold is naturally isomorphic to its singular
cohomology; this implies that the de Rham cohomology is not just invariant under
diffeomorphisms, but also under homeomorphisms!

Moreover, the de Rham cohomology has the following computability property:
given a finite good cover {Uα} of M, the cohomology of M is completely deter-
mined by combinatorial data, namely which of the intersectionsUα1∩· · ·∩Uαk are
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nonempty. This can be deduced from a systematic study of the relation between
de Rham cohomology and Čech cohomology, which is based on abstract simplicial
complexes constructed from an open cover of a topological space.

The agreement between the de Rham cohomology and other cohomology theo-
ries is not merely coincidental. In the 1940s, Eilenberg and Steenrod gave a unified
approach to the various cohomology theories, under the Eilenberg-Steenrod axioms.
They showed that any theory satisfying these axioms, which includes all the coho-
mology theories mentioned above, agree at least on all CW complexes. Hence any
such cohomolgy theory can be used interchangeably, depending on which is most
convenient given the context (simplicial cohomology for simplicial complexes, de
Rham cohomology for smooth manifolds, etc.).
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