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In the previous reading report, we covered the fundamental concepts of de
Rham cohomology for smooth manifolds, and the Mayer-Vietoris sequence. In this
report, we will study the generalisation to the Cech-de Rham differential complex

The material presented here essentially follows §8 and 9 of Bott and Tu (1982).

The Mayer-Vietoris sequence

We start by filling in details in the outline of proof given in the previous read-
ing report, that the Mayer-Vietoris sequence induces a long exact sequence in co-
homology.

Proposition (Snake lemma). Consider the following commutative diagram in the cate-
gory of vector spaces,

0 N QAN VN ol
T e
A—"—B 2

> C > 0

where the rows are exact. Then there exists a homomorphism d such that

f g d F/ g’
ker a — kerb — ker ¢ — coker a — cokerb — cokerc

is exact.

Proof. For vy € ker c, by surjectivity of g there exists 3 € B with g() = y. Write
B’ =b(p); then g’(B’) = c(g(B)) =c(y) =0,s0 B’ € kerg’ = im ' implies there
exists o’ € A’ with (') = B’.

Moreover, for any other choice BeB B €B,x €A’ satisfying the above
construction, we have B B € ker g = imf, so there exists ¢ € A with f(e) = [5 3.
Hence

'(a(e)) = b(f(e) = B/ — B’ = (o' — '),
so by injectivity of f' we have &’ — o/ = a(e) € im a.

Thus for all v € ker c, we may uniquely define d(y) = «’ +im a € coker a.
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We now show exactness in four steps. Note that, by injectivity of f’ (x),

im f = im f Nkerb = ker g Nkerb = ker §,
so kera - kerb -5 kerc is exact. Similarly, by surjectivity of g (xx),

imf’ =imf'/imb = kerg’/imb = ker ¢/,
so cokera > cokerb L5 cokerc is exact.

Ify € img,ie. y = g() with € kerb, then in the above construction, 3’ =
b(B) = 0, so by injectivity of f’ we have o’ = 0, ie. d(y) = 0. Conversely, if
d(y) = 0then o’ € ima, say &’ = a(a). Then b(p) = B’ = f'(a(x)) = b(f(x)), so
B —f() € kerb, and g o f = 0 implies g(3 — f(x)) = g() = y. Hencey € im §.

Thus im § = kerd, so kerb -2 kerc -3 cokera is exact.

If &’ +ima € im d, then in the above construction, f'(«’) = 3’ = b(3) € imb,
so f'(a/ +im a) = 0+imb. Conversely, if f’(«’ +im a) = 0+imb, ie. f'(a/) € imb,
say f'(«’) = B’ =b(p), theny = g(p) satisties d(y) = «’+im a. Hence o’ +ima €

imd. Thusimd = kerf’, so kerc 4, cokera = cokerb is exact. O

Recall that a differential complex (or cochain complex) is a direct sum of vector
spaces C = ®4czC9 equipped with homomorphisms d = dq : C9 — C9™! such
that dq o dq—1 = 0. A chain map between differential complexes is a linear map
f: A — B with fod? = dP o f. The cohomology of C is H*(C) = @®4ezH9(C), with
HI(C) =kerdq/imdq_;.

Corollary. Given a short exact sequence of differential complexes

0 —>A5S5B-%C—0,

where f, g are chain maps, there is a long exact sequence of cohomology groups

(_> Hq+1(A) f—*>
d*

QH‘*(A) " 5 HeB) —L HI(C) )

Proof. We apply the snake lemma to the following diagram:

0——kerdd,; —— kerd®,, —— kerd§, ; —— 0
d{}T dE‘T dgT
0 N A f B SN c . 0
“imd? “imad® imd§_, '

This gives an exact sequence

*

HA(A) 5 HIB) L HA(C) &5 HatT(A) 5 Hat(B) L Hat1(Q)



Piecing together these exact sequences gives the desired long exact sequence. [

Let Q9(M) denote the differential g-forms on a smooth manifold M.
Suppose that M = U U V, with U, V open. Recall that we have the sequence of
inclusions

M+ U]V £ Uunv,
Lv
where U] [V = Ux{0}UV x{1}is the disjoint union, and t, Ly are inclusion maps.
Under the contravariant functor (¥, this induces maps
Q* (M) 5 Q*(U) @ Q*(V) — Q*(UNV) ,
W

each of which is a restriction of differential forms (ie. pullback induced by the
inclusion). Taking the difference of the last two maps, we get the Mayer-Vietoris
sequence

0 — QM) 5 O (W)@ Q* (V) > Q*(UNV) — 0
(w, 1) — T— W

Previously we checked that this sequence is exact, by using a partition of unity.
To anticipate the construction in the next section, we arrange the objects in-
volved in the Mayer-Vietoris sequence the following table:

q
3 : : :
21 02U @ Q2(V) Q*(unv) 0
Hao'wmaealv) a'(unv) o
01 Q%W e (V) Q°(UunVv) 0
0 1 270
QiU e QI(V) p=0
Write KP4 for the (p, q)-entry of the table, so KP9 = ¢ Q9(UN V) p=1

0 P =2

There are two differential operators naturally associated to this table, namely
the exterior derivative d (going up each column) and the difference operator 5
(going across each row), with d> = 0 and 8% = 0 (since every & other than the
tirst is 0). The rows of the table are exact by the Mayer-Vietoris sequence, and

the columns are exact only when U, V and U N V have trivial cohomology, ie.
H*(U) = H* (V) = H* (U N V) = H*(pt).

Generalised Mayer-Vietoris sequence

More generally, instead of an open cover of M with two open sets {U, V}, we
may consider an open cover 4 = {Uy : « € J}, where | is a countable, totally



ordered set. Denoting the finite intersection Uy, MUy, N---NUg, by Ugy .. 00, WeE
have a sequence of inclusions

0
TTue & 11 5O
M <— ll“o 01 Ll“oaq il u040061062 T
— 02
o< X1 — Xo<x1<x2

where 0; is the inclusion ignoring the ith open set, eg. for x < <y,
ao . u(xgy — U(gy 61 . U(Xﬁ,y — Um, 62 . U“M — u(xg

Under the contravariant functor (¥, these inclusions induce maps

S0

T * —)60 * * j
Q*(M) | | Q (uao) 0 | | Q (u(XoOﬂ) i} | | Q (uOC()OﬂCXz) —
X <X 2} X< X <X

where §; are the corresponding restriction maps, eg.

80 : Q" (Ugy) = [ [ Q" (Uapy)

x<f3

51 : Q (Uay) = [ [ Q" (Unpy)

x<pP<y
82: Q" (Uep) = [ [ Q" (Uapy)
B<y
Analogously to the Mayer-Vietoris sequence, we define the difference operator

5= (1% : [ [Q (Ungap) = [ [ Q" (Unig...cr)-

Explicitly, if w € [ Q* (Ugy..., ) has components w,...«,, then

p+1

(Sw)(xo._.(po - Z(_1)iwoco...6c\i...ocp+1) (*)
i=0

where terms on the right are restricted to U, . and - denotes omission. We

check that &% = 0:
(52w)oco...ocp+z = Z(_] )i(éw)ao...&\i...ocp_,_z

i
L i
= Z(_1 )l+]woco...&\j...&\i...ocp+z + Z(_1 )1+] woco...&\i...&\j...ocmz =0.

j<i j>i

cXp1/

Here we set a convention: if w € J]Q*(Ug,...«,) and 7t is a permutation of
{0,...,p}, define
wO(n(o)...O(T[(p] - (_1 )O-(n)wOCo...(Xp)
where o(7) is the signature of 7. It can be checked that () still holds when indices
are interpreted with this convention.



Proposition (Generalised Mayer-Vietoris sequence). The sequence
0 — Q' (M) 5 JTQ*(Us) > TTQ* (Ungay) == [T (Ungayan) —> -
is exact.

Proof. Note that elements of [ [ Q*(U,,) annihilated by b are those which agree on
all overlaps U, «,, which are precisely those which can be glued together to give
a global form on M. Hence imr =kerd N [ Q*(Uy,).

Let {p«} be a partition of unity subordinate to the open cover 4l = {U}. Define
an operator K: [TQ*(Uy,...«,) = [T Q*(Uny...qr, ) DY

(Kw)oco...ocpq - Z pocwcxcxo...ocpq .
e

Then
(6Kw)oc0...ocp = Z(_1 )i(Kw)oco...&\i...cxp

= Z(_] )lpocwococo...&\i...ocpq )
i,

(Kéw)oco...ocp - Z poc(éw)cxoco...ocp,1

= (Z p“) Weg...o0p + Z(_] )H_] pcchxoco...a...ocp

= Wag...op — Z(_] )ipawaao...@...ap-
Hence 6K + K& = 1. In particular, if dw = 0 then §(Kw) = w, so every cocycle is a
coboundary, and the given sequence is exact. O

We can arrange the Mayer-Vietoris sequence in an augmented double complex:

q

0— QM) 5| K K2
0—-Q'(M) 5 | K& KT
0— QM) 5 | KOO KHO .o

where KP4 = ] Q4 (Ug,...«, ) are the p-cochains of the open cover il with values
in the g-forms. As before, there are two differential operators associated to this
complex: the exterior derivative d along the columns, and the difference operator
b along the rows.

Note that d and & commute; hence we can define a (singly graded) differential
complex K" =P, ,_, K9, with differential operator D = & + (—1)Pd satisfying

D=6+ (—1)PTA)s+ (—1)P(5+ (—1)Pd)d = 6* + d6 F 8d + d* = 0.



The double complex K** is called the Cech-de Rham complex. The exactness of
the rows implies that the Cech-de Rham complex computes the de Rham cohomol-
ogy of M; more precisely, we have the following;:

Proposition (Generalised Mayer-Vietoris principle). The map of cohomologies
™ Hjzx(M) — Hp(K"),
induced by the inclusion map v : Q*(M) — K**, is an isomorphism.
Proof. Note that Dr = (8 + d)r = dr = rd. Thus r is a chain map, so r* is well-
defined.

Consider ¢ = ZEZO ¢@p € ker D, with @, € K" 7P_If p’ is the maximal index
with ¢, #0,and p’ > 1, we have

0= D(p = 6(913’ + (6@1)’71 + (_])p/d@p’) =+ (5(913’72 + (_1 )p/ild(Pp’fl) +ey

where bracketed terms have the same order (ie. belong to the same KP>9). Hence
5@, = 0, so by exactness of rows there exists p € KP' =1 with 5 = @,

®o ®o

Ppr— *
ll) Ppr 0
0 0

Hence ¢ — D is an element of the D-cohomology class of ¢ with KP""~P com-
ponents 0 for p > p’. Repeating this argument, we see that every D-cohomology
class has a representative ¢ whose only nonzero component is the top component
@o. In particular, this shows r* is surjective.

0= w > | r(w) 0= wS | r(w)
x 0 015 @ O

Moreover, if r*(w) = 0, ie. 7(w) = D@ for some @, then by changing representa-
tives in the D-cohomology class, we may assume that ¢ € K®™. Then taking the
K™ component of the above gives 5@ = 0, ie. ¢ = () for some T. Hence w = dr,
so w is cohomologous to 0. Thus 1™ is injective. O

Cech cohomology

We now augment the Cech-de Rham complex with the kernel of the bottom d
in each column:



Qo

0= 0M) 5| [10%(Us) [102(Unga) 102 (Ungares)
0 Q' (M) 5| [T (Usy) T10"(Ungw) 119" (Ungare)
(

O%QO(M) l> HQO ucxo) HQO(U-ocooq) HQO(U-ocooqocz) Toop
T T T
CO(L,R) C'(4,R) C*(4,R)
i\ T T
0 0 0

Note that CP (4, R) is the vector space of functions which are locally constant on
each Uy,...«,. The bottom row

CO(,R) 2 CT (8, R) 2 C2(4,R) > ...

is a differential complex, and its cohomology H*(&(, R) is called the Cech cohomology
of the open cover L.

Assume that i is a good cover, ie. all finite intersections Uy,...«, are diffeomor-
phic to R™. Then the augmented columns of the double complex are all exact, and
the same argument as in the previous section will give an isomorphism between
the cohomology of the double complex and the Cech cohomology, ie.

Hir(M) = Hp (K*) = H* (8, R).

The importance of this isomorphism comes from the link between de Rham
cohomology, which describes the differential geometry of forms on M, and Cech
cohomology, which is determined by purely combinatorial data, namely how open
sets in [ intersect each other.

Examples

To highlight the combinatorial nature of the Cech cohomology, we will compute
a few examples explicitly.

Example: H*(S') Consider S' = R/Z, with the open cover & = {Uy, U, Uy}
given by Uy = (—1/3,1/3), U; = (0,2/3), U, = (1/3,1). It is easy to check that tl is
a good cover, with Uy # 0, Ugy2 = 0. Now

COLUR) = {(wo, wq, ws) : wy constant on Uy} = R3,
C' (¢4 R) ={(no1,Mo2,M12) : NM«p constant on Ugp} = R>.
Now the coboundary operator 5 : C° — C' is given by (dw)xp = wp — Wy, SO
kerd ={(c,c,c) : c e R} =R,
CULR) o

imod = =
O = er(5:CO = CT)




Hence

HO(S') = HO(&, R) = ker(5:C° - C') =R

ker(6: C' — C?) R3
H'(S") =H'(L,R) = ~_—_ ~TRR,
(5%) R = me 0o R

Example: H*(S?) Consider S? as the surface of a sphere embedded in R3.
Inscribe a regular tetrahedron, and project it outwards onto S?. Take open sets

U = {Uop, Uy, Uy, Us} slightly bigger than the four projected faces; then il is a good
cover of S2. As above, we have Uxpy # 0, Ugr23 = (0. Hence

Co(U,R) = R*, C'(U,R) = RE, C?(U,R) =
Then
ker(5:C° = C')={(c,c,c,c) : ceR} =R

Co(YU, R)
ker(6:CO — C1)

Ifn = (Mo1,M02,Mo03, N12,M13,M23) € ker(d : C' — C?), then we have

= R3,

m(5:C°— C) =

No1 — Moz +MN12 =0 Mo1 —Mo3 +M13 =0
Moz —MNo3 +1M23 =0 M2 —M13+MN23 =0
Hence
ker(6:C' — C?) ={(a,b,c,b—a,c—a,c—b) : a,b,c € R} =R,
C'(¢,R) ~ w3
ker(6:C! — C?) '

Combining the above, we get

m(5:C' = C?) =

HO(S?) = HO(U,R) = ker(5: C® — C") = R,
ker(6:C' - C?) _ R3
1 2\ 1 _ ~ ~
H(S)_H(u,R)_i 5005 Ch SR =0,
ker(6:C? = C3) _ R*
202y 142 _ ~ ~
H(S)_H(u,R)_i O S R.
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