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Matrix Lie groups

A matrix Lie group is a closed subgroup of GL(n,R) or GL(n,C)
(under vector norm induced from Rn2 or Cn2 ).

Example

GL(n,R) GL(n,C)
SL(n,R) � {X : det(X) � 1} SL(n,C) � {X : det(X) � 1}

O(n) � {X : XXT
� 1} U(n) � {X : XX† � 1}

SO(n) � {X : XXT
� 1, SU(n) � {X : XX† � 1,

det(X) � 1} det(X) � 1}

SO(p, q), SU(p, q), Sp(n), . . .

Ang Yan Sheng Matrix Lie Groups 1 / 15



Tangent space at 1

G1

g
0

g � T1G �

{
C′(0) :

C : (−δ, δ) → G smooth
C(0) � 1

}
.
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The matrix exponential

G1

g
0 A

exp

1 +
A
n

is “almost” in G.(
1 +

A
n

)n

is “almost” in G.

“ exp(A) is in G.”

Definition

exp(A) � 1 + A +
A2

2!
+

A3

3!
+ · · · .

Proposition

A ∈ g �⇒ exp(A) ∈ G.

exp(A + B) � exp(A) exp(B) if AB � BA.
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The matrix logarithm

G1

g
0

exp log

Definition

log(1 + X) � X − X2

2
+

X3

3
− + · · · (|X | < 1).

Proposition
For some ε > 0, log(Nε(1)) ⊆ g.

Theorem
G is a smooth manifold, with dimG � dim g.

Hence every matrix Lie group is a Lie group.
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The Lie bracket

Can we recover G from vector space g? No.
Need new operation on g:

Non-commutative
“Captures” group law on G

Proposition
The commutator [X ,Y ] � XY − YX is a bilinear map on g, with

[X ,Y ] � −[Y ,X],
[X , [Y , Z]] + [Y , [Z ,X]] + [Z , [X ,Y ]] � 0.

Hence every g is a Lie algebra.
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The Lie bracket

The Lie bracket gives the group law near 1:

Theorem (Campbell-Baker-Hausdorff)
If exp(Z) � exp(X) exp(Y ), then

Z � X + Y +
[X ,Y ]

2
+
[X , [X ,Y ]] + [Y , [Y ,X]]

12
+ · · · ,

where all terms are Lie brackets in X and Y.

Can we recover G from Lie algebra g? No!
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Examples: 1D

SO(2)
U(1)

1

O(2)

1

(R,+) 1

{(
1 x
0 1

)}
� (R,+)

O(2) is not connected
SO(2) � R/Z:
quotient by discrete
central subgroup
R is simply connected,
SO(2) is not
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Quarternions

Complex numbers C(
a −b
b a

)
� a1 + bi

Quarternions H(
a + id −b − ic
b − ic a − id

)
� a1 + bi + cj + dk

i2 � j2 � k2
� −1,

ij � k, jk � i, ki � j,
ji � −k, kj � −i, ik � −j.

|q | �
√

a2 + b2 + c2 + d2

q � a1 − bi − cj − dk
qq � |q |21
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SU(2) and SO(3)

SU(2) � {q ∈ H : |q | � 1}
� {cos θ + u sin θ : θ ∈ R, u ∈ Ri + Rj + Rk, |u| � 1}.

Theorem
Let t � cos θ + u sin θ ∈ SU(2). Then on Ri + Rj + Rk,

ρt : q 7→ t−1qt

is a rotation of angle 2θ about the axis u.
Moreover, ρt � ρt′ ⇐⇒ t′ � ±t.

SO(3) � SU(2)/{±1}: quotient by discrete central subgroup
SU(2) ≈ S3 is simply connected
SO(3) ≈ S3/{±1} � RP3 is not
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The plate trick
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Lie homomorphisms

G1

g
0

group
+ manifold

vector space
+ Lie bracket

H1

h
0

Φ

ϕ

Ang Yan Sheng Matrix Lie Groups 11 / 15



The main theorem

G1

g
0

exp
H1

h
0

exp

Φ

ϕ

Theorem
Let G,H be simply connected matrix Lie groups. Then every Lie
homomorphism ϕ : g→ h determines a Lie homomorphism
Φ : G→ H that induces ϕ.

Step 1: Lift ϕ to Φ near 1.
By Campbell-Baker-Hausdorff, group law is preserved.
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1

A

A1
A2

Step 2: Define Φ(A) by stepping along a path.
Φ(A) is invariant under refinements.
Φ(A) does not depend on choice of steps.
Φ(A) is invariant under small deformation of paths.
Φ(A) does not depend on choice of path.

Corollary
Any simply connected matrix Lie group is determined by its Lie
algebra.
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Conclusion

Matrix Lie groups: large class of examples
Constructions for general Lie groups: exp, Lie bracket, . . .
Geometry↔ algebra↔ topology
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