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This report will be a brief introduction to the central ideas of Lie theory, by
developing them in the concrete context of matrix groups (ie. subgroups of GL(n,R)
or GL(n,C)).

Some classical groups

The most natural and important examples of matrix groups are those that pre-
serve certain properties of the space they are acting on. We start by listing some
of these examples, called the classical groups by Hermann Weyl, who gave the first
systematic treatment of these groups in the 1930s.

For instance, over the vector space Rn, we have the general linear and special
linear groups:

GL(n,R) = {X ∈Mn(R) : det(X) 6= 0},
SL(n,R) = {X ∈Mn(R) : det(X) = 1}.

The elements of GL(n,R) are the invertible linear maps (which preserve the vector
space structure of Rn), and the elements of SL(n,R) additionally preserve volume
and orientation.

Rn also has the structure of an inner product space, so it is possible to talk
about length and angles. The symmetries of this space form the orthogonal and
special orthogonal groups:

O(n) = {X ∈Mn(R) : XXT = 1},
SO(n) = {X ∈Mn(R) : XXT = 1, det(X) = 1}.

By standard results in linear algebra, the elements of O(n) are the isometries of Rn,
and the elements of SO(n) additionally preserve orientation.

There are analogous constructions for all 4 families of groups above for Cn,
with the Hermitian form replacing the role of the bilinear form:

GL(n,C) = {X ∈Mn(C) : det(X) 6= 0},
SL(n,C) = {X ∈Mn(C) : det(X) = 1},

U(n) = {X ∈Mn(C) : XX† = 1},
SU(n) = {X ∈Mn(C) : XX† = 1, det(X) = 1},
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where X† denotes the conjugate transpose of X.
The term “classical group” usually also includes the symmetry groups of in-

definite forms (such as SO(p, q) and SU(p, q)), and also analogues over the quar-
ternions Hn (such as Sp(n)). These groups can also be studied with the methods
in this report (for example, they are also matrix Lie groups, to be defined later);
however, in the interest of space, they lie beyond the scope of this report.

The matrix exponential

We would like to define the exponential on Mn(C) by a power series, which
means we need a metric onMn(C) to deal with convergence.

For a matrix A = (aij) ∈Mn(C), define its absolute value as

|A| =
√

Tr(AA†) =

(
n∑

i,j=1

|aij|
2

)1/2
.

Note that this is the Euclidean norm under the usual isomorphism Mn(C) ∼= Cn2 .
This gives Mn(C) the structure of a normed vector space, for which we recall the
following results from functional analysis (proofs omitted):

Proposition. Let A,Xk ∈Mn(C). Then:
(a) Absolute convergence implies convergence, ie.∑∞

k=0 |Xk| <∞ =⇒
∑∞
k=0 Xk converges.

(b) If
∑∞
k=0 Xk converges, then∑∞

k=0AXk = A
∑∞
k=0 Xk,

∑∞
k=0 XkA = (

∑∞
k=0 Xk)A.

The key property of the matrix absolute value is submultiplicativity:

Proposition. For any A,B ∈Mn(C), we have |AB| 6 |A||B|.

Proof. Write A = (aij), B = (bij), and AB = (cij). Then

|cij|
2 =

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
2

6

(
n∑
k=1

|aik||bkj|

)2

6

(
n∑
k=1

|aik|
2

)(
n∑
k=1

|bkj|
2

)
(Cauchy-Schwarz).

Hence

|AB|2 =

n∑
i,j=1

|cij|
2 6

n∑
i,j=1

(
n∑
k=1

|aik|
2

)(
n∑
k=1

|bkj|
2

)

=

(
n∑

i,k=1

|aik|
2

)(
n∑

k,j=1

|bkj|
2

)
= |A|2|B|2.
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We may now define the matrix exponential function for A ∈Mn(C) by

exp(A) = In +A+
A2

2!
+
A3

3!
+ · · · .

Proposition. The series for exp(A) converges for all A ∈Mn(C).

Proof. It suffices to check that the series is absolutely convergent. Indeed, we have

|In|+ |A|+

∣∣∣∣A22!
∣∣∣∣+ ∣∣∣∣A33!

∣∣∣∣+ · · · 6 √n+ |A|+
|A|2

2!
+

|A|3

3!
+ · · ·

=
√
n− 1+ e|A| <∞.

The following are some useful properties of the matrix exponential.

Proposition. Let A,B ∈Mn(C). Then:
(a) If AB = BA, then exp(A) exp(B) = exp(A+ B).
(b) exp(A) is invertible, with inverse exp(−A).
(c) d

dt
exp(tA) = A exp(tA) = exp(tA)A.

(d) If A is invertible, then exp(ABA−1) = A exp(B)A−1.
(e) det(exp(A)) = eTr(A).

Proof. (a) Note that the identity exp(x) exp(y) = exp(x + y) holds over C, so it
holds for formal power series in two commuting variables x, y. The result follows.

(b) This follows from (a), since A and −A commute.
(c) Note that each entry of the matrix exp(tA) is a power series in t, and thus

can be differentiated term-by-term in its disk of convergence (ie. for all t ∈ C).
Hence

d

dt
exp(tA) =

d

dt

(
In + tA+ t2

A2

2!
+ t3

A3

3!
+ · · ·

)
= A+ tA2 + t2

A3

2!
+ · · ·

= A exp(tA) = exp(tA)A,

since A can be factored out either on the left or the right.
(d) We have

exp(ABA−1) = In +ABA−1 +
(ABA−1)2

2!
+

(ABA−1)3

3!
+ · · ·

= In +ABA−1 +A
B2

2!
A−1 +A

B3

3!
A−1 + · · · = A exp(B)A−1.

(e) By the Jordan normal form, we can write A = PUP−1 for some invertible P,
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where U =

λ1 ∗
. . .

0 λn

 and λ1, . . . , λn are the eigenvalues of A. Now

exp(U) =
∞∑
k=0

Uk

k!
=

∞∑
k=0

1

k!

λ
k
1 ∗

. . .
0 λkn

 =

e
λ1 ∗

. . .
0 eλn

 ,
so we have

det(exp(A)) = det(exp(PUP−1))
= det(P exp(U)P−1)
= det(exp(U))

= eλ1 · · · eλn = eλ1+···+λn = eTr(A).

The Lie algebra of a matrix group

Tangent spaces For any matrix groupG, we define its tangent space at the identity
T1G as the set of matrices of the form A ′(0) for some smooth path A : (−ε, ε) → G

with A(0) = 1. Since matrix groups are not necessarily manifolds, we first need to
show that T1G is indeed a vector space.

Proposition. T1G is a R-vector space.

Proof. Let X, Y ∈ T1G, so there exists smooth paths A,B in Gwith A(0) = B(0) = 1,
A ′(0) = X, B ′(0) = Y. Hence C(t) = A(t)B(t) is also a smooth path in G, with
C(0) = 1 and

C ′(0) = A ′(0)B(0) +A(0)B ′(0) = X+ Y,

so X+ Y ∈ T1G.
Also, if r ∈ R, then D(t) = A(rt) is a smooth path in G with D(0) = 1 and

D ′(0) = rA ′(0) = rX, so rX ∈ T1G.

Lie algebras Knowing T1G gives us some information about G. However, T1G

cannot capture the full behaviour ofG, since addition in T1G commutes while mul-
tiplication in G might not. To capture this nonabelian behaviour, we define the
commutator of two matrices X, Y by [X, Y] = XY − YX.

It is straightforward to check that the commutator is a bilinear map onMn(C),
satisfying the following properties:

Proposition. Let X, Y, Z ∈Mn(C). Then

[X, Y] = −[Y, X], [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y]] = 0.

A vector space equipped with a bilinear form [·, ·] satisfying the above two con-
ditions is known as a Lie algebra.
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Proposition. T1G is closed under the commutator, ie. if X, Y ∈ T1G then [X, Y] ∈ T1G.

Proof. Let A,B be smooth paths in G such that A(0) = B(0) = 1, A ′(0) = X and
B ′(0) = Y. For fixed s, consider the smooth path Cs(t) = A(s)B(t)A(s)−1 in G,
which satisfies C(0) = 1. Hence

D(s) = C ′s(0) = A(s)YA(s)
−1 ∈ T1G,

so D is a smooth path in the vector space T1G. Hence

D ′(0) = A ′(0)YA(0)−1 +A(0)Y(−A ′(0)) = XY − YX = [X, Y] ∈ T1G.

Hence the vector space T1G, equipped with the commutator, is a Lie algebra
called the Lie algebra of G. It is denoted by the corresponding Fraktur letter in
lowercase, such as g.

The Lie algebras of classical groups

We now compute the Lie algebras for the classical groups that we have seen so
far. The main idea is to use the differential equation for the matrix exponential, to
construct a smooth path with a given velocity at 1.

GL(n,R), GL(n,C) When G = GL(n,R), we expect the tangent space to be
the whole ofMn(R). Indeed, for any X ∈Mn(R), consider the smooth pathA(t) =
exp(tX). ThenA(t) is an n×n invertible matrix, soA is a smooth path in GL(n,C).
Also, A(0) = 1 and

A ′(0) =
d

dt
exp(tX)|t=0 = X exp(tX)|t=0 = X,

so X ∈ gl(n,R)). An analogous argument holds for GL(n,C), so

gl(n,R) =Mn(R),
gl(n,C) =Mn(C).

The differential of det Before proceeding, we will use the same method to find
the differential of the determinant map at 1.

Proposition. For X ∈Mn(C), we have (T det)1(X) = Tr(X).

Proof. Let A(t) = exp(tX) as before. Then A(0) = 1 and A ′(0) = X, so

(T det)1(X) =
d

dt
det(A(t))|t=0

=
d

dt
det(exp(tX))|t=0

=
d

dt
etTr(X)

∣∣
t=0

= Tr(X).
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SL(n,R), SL(n,C) Let C(t) be a smooth path in SL(n,R). Then det(C(t)) = 1,
and applying d/dt|t=0 on both sides gives

d

dt
det(C(t))|t=0 = Tr(C ′(0)) = 0,

so any X ∈ sl(n,R) satisfies Tr(X) = 0.
Conversely, for any X ∈Mn(R) with Tr(X) = 0, let A(t) = exp(tX). Then

det(A(t)) = det(exp(tX)) = etTr(X) = 1,

soA(t) is a smooth path in SL(n,R). Also,A(0) = 1 andA ′(0) = X, so X ∈ sl(n,R).
We argue analogously for SL(n,C) to obtain

sl(n,R) = {X ∈Mn(R) : Tr(X) = 0},
sl(n,C) = {X ∈Mn(C) : Tr(X) = 0}.

O(n), SO(n) Let C(t) be a smooth path in O(n) or SO(n). Then C(t)C(t)T = 1,
and applying d/dt|t=0 on both sides gives

d

dt
C(t)C(t)T

∣∣
t=0

= C ′(0)C(0)T + C(0)C ′(0)T = C ′(0) + C ′(0)T = 0,

so any X ∈ o(n) or so(n) satisfies X+ XT = 0, ie. X is skew-symmetric.
Conversely, for any X ∈Mn(R) with X+ XT = 0, let A(t) = exp(tX). Then

A(t)A(t)T = exp(tX) exp(tXT ) = exp(tX) exp(−tX) = exp(0) = 1,

so A(t) is a smooth path in O(n). Hence det(A(t)) = ±1, but since A is continuous
and det(A(0)) = 1, we have det(A(t)) = 1 for all t, so A(t) is also a smooth path in
SO(n). Also, A(0) = 1 and A ′(0) = X, so X ∈ o(n) and so(n). Hence

o(n) = so(n) = {X ∈Mn(C) : X+ XT = 0}.

U(n), SU(n) By replacing the transpose XT with the conjugate transpose X†,
we may argue completely analogously to the above to obtain

u(n) = {X ∈Mn(C) : X+ X† = 0},
su(n) = {X ∈Mn(C) : X+ X† = 0, Tr(X) = 0}.

The matrix logarithm

Matrix Lie groups We would like to say that the Lie algebra contains all the
information about a given matrix group. This is not true in general (eg. O(n) and
SO(n) have the same Lie algebra). However, it is a general phenomenon of Lie
theory that given certain topological conditions on the group, the structure of the
group is completely determined by its Lie algebra.

In the case of matrix groups, it is necessary to assume a certain closure property.
We say that a matrix groupG is a matrix Lie group ifG is a closed subset of GL(n,R)
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or GL(n,C) under the matrix absolute value. By usual results in metric spaces, we
have the following:

Proposition. A matrix group G is a matrix Lie group if and only if it is closed under
nonsingular limits, ie. if A1, A2, . . . ∈ G satisfies limn→∞An = A and det(A) 6= 0,
then A ∈ G.

Corollary. All the classical groups GL(n,R), GL(n,C), SL(n,R), SL(n,C), O(n),
SO(n), U(n), SU(n) are matrix Lie groups.

Proof. As an illustrative example, we will prove that SO(n) is a matrix Lie group;
an analogous argument can be applied to the other cases.

If A1, A2, . . . ∈ SO(n) is a sequence converging to A ∈ GL(n,R), then{
AmA

T
m = 1

det(Am) = 1
=⇒

{
AAT = 1

det(A) = 1,

by continuity of X 7→ XXT and X 7→ det(X), respectively. Hence A ∈ SO(n), so
SO(n) is a matrix Lie group by the previous proposition.

The matrix logarithm For A ∈ Mn(C) with |A| < 1, we define the matrix
logarithm function by

log(1 +A) = A−
A2

2
+
A3

3
−
A4

4
+− · · · .

This series is absolutely convergent, by comparison with the geometric series |A|+
|A|2 + |A|3 + · · · . Hence log(1 +A) is well-defined and continuous on |A| < 1.

Proposition. Let X, Y ∈Mn(C). Then:
(a) If log(X) is defined, then exp(log(X)) = X.
(b) If log(exp(X)) is defined, then log(exp(X)) = X.
(c) If XY = YX, and log(X), log(Y) and log(XY) are all defined, then log(XY) =

log(X) + log(Y).

Proof. Note that these identities hold in formal power series in two commuting
variables, eg. in C.

Theorem. If G is a matrix Lie group and X ∈ T1G, then exp(X) ∈ G.

Proof. Let A be a smooth path in Gwith A(0) = 1 and A ′(0) = X. Note that

log(A(1/n))
1/n

=
A(1/n) − 1

1/n

(
1 −

A(1/n) − 1
2

+
(A(1/n) − 1)2

3
−+ · · ·

)
.

Now as n → ∞, we have A(1/n) → 1. Note that the norms of the terms in the
brackets (other than the first) is bounded by a geometric sequence, so taking limits
on both sides gives

lim
n→∞n log(A(1/n)) = lim

n→∞
A(1/n) − 1

1/n
= A ′(0) = X.
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Taking exp on both sides yields

lim
n→∞ exp(n log(A(1/n))) = lim

n→∞A(1/n)n = exp(X).

NowA(1/n) ∈ G impliesA(1/n)n ∈ G, and since exp(X) is invertible (with inverse
exp(−X)), we have exp(X) ∈ G by closure under nonsingular limits.

Proposition. Let G be a matrix Lie group, and consider the sequences Am ∈ G and
αm ∈ R such that

lim
m→∞Am = 1 and lim

m→∞
Am − 1
αm

= X.

Then exp(tX) ∈ G for all t ∈ R. In particular, X ∈ T1G.

Proof. Let am = b1/αmc, so

lim
m→∞am(Am − 1) = X+ lim

m→∞
(
am −

1

αm

)
(Am − 1) = X,

since |am − 1/αm| < 1 and Am − 1→ 0.
As before, note that

log(Am)
1/am

=
Am − 1
1/am

(
1 −

Am − 1
2

+
(Am − 1)2

3
−+ · · ·

)
,

and the sum in the bracket has limit 1 asm→∞. Hence

lim
m→∞am log(Am) = lim

m→∞am(Am − 1) = X,

and taking exp on both sides gives

exp(X) = lim
m→∞Aamm .

NowAm ∈ G impliesAamm ∈ G, and since exp(X) is invertible, we have exp(X) ∈ G
by closure under nonsingular limits.

Replacing αm with αm/t in the above argument, we also get exp(tX) ∈ G.
Hence the smooth path A(t) = exp(tX) lies in G, and satisfies A(0) = 1, A ′(0) = X.
Hence X ∈ T1G.

Proposition. Let G be a matrix group. Then there is a neighbourhood U ⊆ G of 1 such
that log(U) ⊆ T1G.

Proof. Assume for sake of contradiction that there is no such neighbourhood of 1.
Then there is a sequence Am ∈ G such that limm→∞Am = 1 and log(Am) 6∈ T1G.

Write log(Am) = Xm + Ym, with Xm ∈ T1G and Ym ∈ T1G
⊥, the orthogonal

complement of T1G in Mn(C). Hence Ym 6= 0. Since log is continuous, we have
Am → 1 implies Xm, Ym → 0 asm→∞.

Note that for everym, the matrix Zm = Ym/|Ym| has norm 1. Hence by Bolzano-
Weierstrass, the sequence Zm has a convergent subsequence Zmk

. Replacing the
sequences Xm, Ym by Xmk

, Ymk
, we may define

lim
m→∞

Ym

|Ym|
= Y,
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so that Y lies in T1G
⊥ and has norm 1.

Now let Tm = exp(−Xm)Am, which is in G since Xm ∈ T1G. Also,

T = exp(−Xm) exp(Xm + Ym)

=

(
1 − Xm +

X2m
2

+ · · ·
)(

1+ Xm + Ym +
(Xm + Ym)

2

2
+ · · ·

)
= 1 + Ym + (∗).

Note that in the above expansion, the powers of Xm that appear are those which
appear in the power series expansion of

exp(−Xm) exp(Xm) = 1,

so every term in (∗) contains either a Y2m or a XmYm. Hence

lim
m→∞

Tm − 1
|Ym|

= lim
m→∞

Ym

|Ym|
= Y,

but by the previous proposition the limit on the left belongs to T1G, contradiction.
Hence there is a neighbourhood of 1 in Gwhich gets sent into T1G by log.

Theorem. Let G be a matrix Lie group. Then log is a homeomorphism from a neighbour-
hood of 1 in G and a neighbourhood of 0 in T1G.

Proof. Take U ⊆ G as in the previous proposition. Then log |U is a continuous map
from U to log(U) ⊆ T1G with inverse exp, so log(U) is a neighbourhood of 0, and
log |U : U→ log(U) is a homeomorphism.

Theorem. Every matrix Lie group G is a smooth manifold, with dimG = dim g.

Proof. Firstly, note that G ⊆ GL(n,C), so G is second-countable and Hausdorff.
Take U ⊆ G as in the previous proposition. For each A ∈ G, let UA = AU =

{AX : X ∈ U}, and ϕA : UA →Mn(C) by

ϕA(AX) = log(X).

Note that this is a homeomorphism from UA to a neighbourhood of 0 in g.
Now for any A,B ∈ Gwith UA ∩UB 6= ∅, and any X ∈ ϕB(UA ∩UB), we have

(ϕA ◦ϕ−1
B )(X) = log(A−1B exp(X)),

which is a smooth function in its domain of definition (since exp, log and left
multiplication by A−1B are smooth functions in their respective domains). Hence
{(UA, ϕA) : A ∈ G} is a smooth atlas forG, soG is a smooth manifold with dimen-
sion dim g.

Lie groups A Lie group is a smooth manifold G with a group structure such
that the group multiplication µ : G × G → G, µ(a, b) = ab, and group inverse
ι : G → G, ι(a) = a−1, are smooth. It is not hard to see that matrix Lie groups are
Lie groups, because the matrix multiplication and inverse operations are smooth
on GL(n,C).
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Lie homomorphisms

Let G and H be Lie groups. A Lie group homomorphism is a group homomor-
phism Φ : G → H which is also a smooth map between manifolds. In the context
of matrix Lie groups, the smoothness requirement can be rephrased as follows (by
chain rule): the map A ′(0) 7→ (Φ ◦A) ′(0) is a well-defined linear map from g to h.

Let a and b be Lie algebras. A Lie algebra homomorphism is an algebra homomor-
phism ϕ : a→ b which preserves the Lie bracket.

We are now able to state the main theorems of this report. Firstly, isomorphic
Lie groups have isomorphic Lie algebras. However, we have already noted that the
converse is false, since matrix Lie groups are not determined by their Lie algebra.
Nevertheless, we will prove that simply-connected Lie groups with isomorphic Lie
algebras are indeed isomorphic.

For convenience, we will refer to both Lie group homomorphisms and Lie alge-
bra homomorphisms as Lie homomorphisms; the intended meaning will always
be clear from context. As usual, in this section g always denotes the Lie algebra of
the matrix Lie group G (since we have yet to define the Lie algebra of a general Lie
group).

Proposition. Let G,H be matrix Lie groups. Then any Lie homomorphism Φ : G → H

induces a Lie homomorphism ϕ : g→ h, in the sense that

ϕ(A ′(0)) = (Φ ◦A) ′(0)

for any smooth path A in G through 1.

Proof. Since Φ : G → H is smooth, ϕ is well-defined. Hence it remains to show
that ϕ preserves the Lie bracket.

If A,B are smooth paths in G passing through 1, let

Cs(t) = A(s)B(t)A(s)
−1 for fixed s.

Now C ′s(0) = A(s)B
′(0)A(s)−1 ∈ g, so

ϕ(C ′s(0)) =
d

dt
Φ(A(s))Φ(B(t))Φ(A(s))−1

∣∣
t=0

= Φ(A(s))(Φ ◦ B) ′(0)Φ(A(s))−1 ∈ h.

Let D(s) = C ′s(0), so D(s) is a smooth path in g and ϕ(D(s)) is a smooth path in h.
By linearity of ϕ,

ϕ(D ′(0)) =
d

ds
ϕ(D(s))|s=0 ,

where D ′(0) = A ′(0)B ′(0) − B ′(0)A ′(0) = [A ′(0), B ′(0)] and
d

ds
ϕ(D(s))|s=0 = (Φ ◦A) ′(0)(Φ ◦ B) ′(0) − (Φ ◦ B) ′(0)(Φ ◦A) ′(0)

= [(Φ ◦A) ′(0), (Φ ◦ B) ′(0)]
= [ϕ(A ′(0)), ϕ(B ′(0))],

and we are done.
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Corollary. If G,H are isomorphic Lie groups, then g, h are isomorphic Lie algebras.

Proof. Let Φ : G → H be a Lie isomorphism, so Φ,Φ−1 induces homomorphisms
ϕ : g→ h, ψ : h→ g respectively. Now

ψ((Φ ◦A) ′(0)) = (Φ−1 ◦Φ ◦A) ′(0) = A ′(0),

so ψ = ϕ−1, and thus ϕ is a Lie isomorphism from g to h.

To prove the partial converse of the above statement, we need a hard and rather
surprising theorem that expresses the product exp(X) exp(Y) as a explicit series,
which only involves Lie brackets in X and Y. We omit the proof of this theorem; an
elementary approach, due to Eichler, is presented in Stillwell (2008).

Theorem (Campbell-Baker-Hausdorff). GivenX, Y, Z ∈Mn(C) such that exp(Z) =
exp(X) exp(Y). Then

Z = X+ Y +
1

2
[X, Y] + (∗),

where the higher-order terms in (∗) are all linear combinations of Lie brackets in X and Y.

We can now show our main result. Recall that a topological space is simply
connected if it is path-connected, and any two paths with the same endpoints can
be continuously deformed into each other (ie. are in the same homotopy class).

Theorem. Let G,H are simply connected matrix Lie groups. Then every Lie homomor-
phism ϕ : g→ h determines a Lie homomorphismΦ : G→ H that induces ϕ.

Proof (sketch). Let U = B(1, δ) ⊆ G be a neighbourhood of 1 such that log |U is a
local homeomorphism.

1. LetΦ(exp(X)) = exp(ϕ(X)) for all exp(X) ∈ U. Then

Φ(exp(X) exp(Y)) = exp(ϕ(X+ Y + [X, Y]/2+ · · · ))
= exp(ϕ(X) +ϕ(Y) + [ϕ(X), ϕ(Y)]/2+ · · · )
= exp(ϕ(X)) exp(ϕ(Y)) = Φ(exp(X))Φ(exp(Y)),

by Campbell-Baker-Hausdorff and the fact that the omitted terms are all Lie
brackets, which are preserved by ϕ. HenceΦ is a Lie group homomorphism
in U.

2. Let A ∈ G. Pick a path from A to 1 in G. The open covering of this path by δ-
balls has a finite subcover; hence there exists a sequence 1 = A1, A2, . . . , Am =

A with
A1, A

−1
1 A2, . . . , A

−1
m−1Am ∈ U.

We now defineΦ(A) = Φ(A1)Φ(A−1
1 A2) · · ·Φ(A−1

m−1Am).
3. Check that refining the sequence A1, . . . , Am by inserting extra points does

not affect the value of Φ(A). Hence given a path from A to 1, Φ(A) is inde-
pendent of the choice of sequence of points along the path.
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4. For any two paths p, q from A to 1, there is a sequence of “elementary defor-
mations” p = p1, p2, . . . , pn = q such that for each deformation from pi to
pi+1, no point on the path moves by more than δ. (This follows from com-
pactness of [0, 1]× [0, 1].)

5. Check thatΦ(A) is constant under elementary deformations, soΦ(A) is inde-
pendent of the choice of path from A to 1. HenceΦ : G→ H is well-defined.

6. Check thatΦ is a Lie algebra homomorphism that induces ϕ.

Corollary. Let G,H are simply connected matrix Lie groups. If g, h are isomorphic, then
G,H are isomorphic.

Proof. Let ϕ : g → h be an isomorphism, so there exists homomorphisms Φ : G →
H inducing ϕ and Ψ : H → G inducing ϕ−1. Now Ψ ◦ Φ : G → G is the unique
homomorphism that induces ϕ−1 ◦ϕ = idg : g→ g, so Ψ = Φ−1. Hence Φ is a Lie
isomorphism between G and H.

Introduction to general Lie groups

We have seen how the Lie bracket and the exponential map shed light on the
structure of matrix Lie groups. However, their definitions rely on the multiplica-
tion in the tangent space, which is not usually defined in the general case. In this
section, we briefly sketch (without proofs) how to extend these constructions to
general Lie groups.

As usual, for a Lie group G, it is customary to write g = T1GG.

The exponential map For a matrix Lie group G, exp satisfies the differential
equation d

dt
exp(tX) = X exp(tX) (X ∈ g), which can be seen as an integral curve of

the vector field V(g) = gX in GL(n,C). In fact, V is a vector field on G due to the
following:

Proposition. For any g ∈ G, we have TgG = gT1G.

Proof. It suffices to consider the bijection between smooth paths A through 1 and
smooth paths B through g given by B(t) = gA(t).

Hence V(g) = gX ∈ gT1G = TgG, so V is a vector field on G.
Note that V satisfies the special property that g1V(g2) = g1g2X = V(g1g2) for

all g1, g2 ∈ G. Such a vector field is called left-invariant.

Proposition. Let G be a general Lie group. Then for all X ∈ g, there exists a unique
smooth left-invariant vector field VX on G with VX(1G) = X.

Hence there is a unique smooth path γX : (−ε, ε) → G which is the integral curve
of VX, satisfying γX(0) = 1G. This integral curve can be extended by the identity
γX(t+ t

′) = γX(t)γX(t
′), so we may now define the exponential map:

exp : g→ G, exp(X) := γX(1).
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This is not a perfect analog of the matrix exponential; in particular, there is no
identity of the form exp(X) exp(Y) = exp(X + Y), because it doesn’t make sense to
say that X, Y ∈ g commute (since g does not have multiplication)! However, the
following properties of exp still hold.

Proposition. Let G be a Lie group, and let X ∈ g. Then:
(a) exp(X) = 1+ X+ · · · , ie. exp(0) = 1G and (T exp)0 = idg.
(b) exp is a diffeomorphism between a neighbourhood of 0 in g and a neighbourhood of

1G in G.

The Lie bracket By the above, exp has a local inverse near 0, which we denote
by log. Hence for sufficiently small X, Y ∈ g, exp(X) exp(Y) will be close to 1G, so
that

exp(X) exp(Y) = exp(µ(X, Y))

for some unique µ defined near (0, 0) in g× g.

Proposition. The Taylor series for µ is given by µ(X, Y) = X+Y+ [X,Y]
2

+ · · · , where the
dots represent terms of order at least 3, and [·, ·] : g× g→ g is a bilinear map satisfying

[X, Y] = −[Y, X], [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y]] = 0.

Hence g, equipped with the Lie bracket, is a Lie algebra, denoted by g = Lie(G).

Fundamental theorems of Lie theory A central idea in the study of Lie groups
is that the tangent space at the identity “almost” determines the entire structure
of the Lie group, which we have seen in action in the case of matrix Lie groups.
We leave the reader with more examples of the interplay between algebra and
topology, the essence of Lie theory, with a sampling of key theorems.

Theorem. For any Lie group G, there is a bijection between connected Lie subgroups
H ⊆ G and Lie subalgebras h ⊆ g, given by H 7→ h = Lie(H).

Theorem. If G1, G2 are Lie groups with G1 connected and simply connected, then every
Lie algebra homomorphism ϕ : g1 → g2 determines a Lie group homomorphism ϕ : G1 →
G2 which induces ϕ.

Theorem. For any finite-dimensional Lie algebra g, there is a simply connected Lie group
G, unique up to isomorphism, such that Lie(G) = g.

Moreover, any other connected Lie groupG ′ with Lie(G ′) = g is of the formG ′ ∼= G/Z
for some discrete central subgroup Z ⊆ G.
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