The Compressed Sensing Paradigm MA4291 Presentation

Ang Yan Sheng A0144836Y

6 Nov 2017

Contents

1. Compressed sensing

2. Matrix completion

The problem with cameras

When you take a picture:

- Make $\sim 10^7$ measurements
- Change basis (discrete cosine, wavelet, etc.)
- ullet Take largest $\sim 10^5$ components

What if measurement is expensive?

Infrared cameras sensor cost

Astronomy data bandwidth, power limit

Medical imaging exposure, time

Data: k-sparse vector $x \in \Sigma_k \subset \mathbb{R}^n$

Measurement: dot product $\langle a_i, x \rangle$

Set of measurements: matrix product Ax, $A \in \mathbb{R}^{m \times n}$

Main Problem

Given $k \ll n$, find measurement matrix $A \in \mathbb{R}^{m \times n}$ $(m \ll n)$ such that any $x \in \Sigma_k$ can be efficiently recovered from Ax.

Need A injective on Σ_k , ie.

$$\{0\} = \ker(A) \cap (\Sigma_k - \Sigma_k)$$
$$= \ker(A) \cap \Sigma_{2k}$$

x = Logan-Shepp phantom

 $A = 50 \times$ undersampling (frequency domain)

x = Logan-Shepp phantom

 $z = \ell_0$ -minimisation

$$\min_{z} \|z\|_0$$

with
$$Az = Ax$$

$$(P_0)$$

x = Logan-Shepp phantom

 $z = \ell_2$ -minimisation

$$\min_{z} \|z\|_2$$
 v

with
$$Az = Ax$$

 (P_2)

x = Logan-Shepp phantom

 $z = \ell_1$ -minimisation

$$\min_{z} \|z\|_1$$
 w

with
$$Az = Ax$$

 (P_1)

Null Space Property

For $T \subseteq [n]$, let v_T be v projected onto coordinates in T.

Definition

 $A \in \mathbb{R}^{m \times n}$ has NSP_k if for all $v \in \ker A \setminus \{0\}$, and $T \subseteq [n]$ of size k,

$$||v_T||_1 < ||v_{T^c}||_1.$$

(ie. largest k coordinates of v contains less than half the mass)

Theorem

A has $NSP_k \iff (P_1)$ has unique solution z = x for all $x \in \Sigma_k$.

$$(\Leftarrow)$$
: $Av_T = A(-v_{T^c})$, so $||v_T||_1 < ||-v_{T^c}||_1$.

$$(\Rightarrow)$$
: $x \in \Sigma_k$ supported on T , with $Ax = Az$:

$$||x||_1 \le ||x - z_T||_1 + ||z_T||_1$$

 $< ||(x - z)_{T^c}||_1 + ||z_T||_1 = ||z||_1.$

Restricted Isometry Property

Definition

Restricted isometry constant $\delta_k(A)$: minimal such that

$$\left| \|Ax\|_2^2 - \|x\|_2^2 \right| \le \delta_k \|x\|_2^2$$
 for all $x \in \Sigma_k$.

Note that $0 \le \delta_1(A) \le \delta_2(A) \le \cdots \le \delta_k(A)$.

Proposition

$$|\langle Ax, Az \rangle - \langle x, z \rangle| \le \delta_{2k} ||x||_2 ||z||_2$$
 for all $x, z \in \Sigma_k$.

Assume that $||x||_2 = ||z||_2 = 1$. Then

LHS =
$$\left| \frac{\|A(x+z)\|_{2}^{2} - \|A(x-z)\|_{2}^{2}}{4} - \frac{\|x+z\|_{2}^{2} - \|x-z\|_{2}^{2}}{4} \right|$$

$$\leq \delta_{2k} \frac{\|x+z\|_{2}^{2} + \|x-z\|_{2}^{2}}{4} = \delta_{2k} \frac{\|x\|_{2}^{2} + \|z\|_{2}^{2}}{2} = \text{RHS}.$$

Restricted Isometry Property

Theorem

If $\delta_{2k}(A) < 1/3$, then A has NSP_k .

Fix
$$v \in \ker A$$
, $T_0 \subseteq [n]$ the k largest entries in v , $T_1 \subseteq [n]$ the k largest entries in $v_{T_0^c}$, $T_2 \subseteq [n]$ the k largest entries in $v_{(T_0 \cup T_1)^c}$, ...

Note that $0 = Av = Av_{T_0} + Av_{T_1} + \cdots$, so
$$(1 - \delta_k) \|v_{T_0}\|_2^2 \le \|Av_{T_0}\|_2^2 = \langle Av_{T_0}, -(Av_{T_1} + Av_{T_2} + \cdots) \rangle \\ \le \sum_{j \ge 1} |\langle Av_{T_0}, Av_{T_j} \rangle| \le \delta_{2k} \|v_{T_0}\|_2 \sum_{j \ge 1} \|v_{T_j}\|_2$$

$$\sqrt{k} \sum_{j \ge 1} \|v_{T_j}\|_2 \le k \sum_{j \ge 1} \max_{l \in T_j} |v_l| \le \sum_{j \ge 1} \sum_{l \in T_{j-1}} |v_l| = \|v\|_1$$

$$\|v_{T_0}\|_1 \le \sqrt{k} \|v_{T_0}\|_2 \le \frac{\delta_{2k}}{1 - \delta_k} \|v\|_1 < \frac{\|v\|_1}{2}.$$

Strategy

Let $\omega_{ij} \sim N(0,1)$, and

$$A = \frac{1}{\sqrt{m}} \begin{pmatrix} \omega_{11} & \cdots & \omega_{1n} \\ \vdots & \ddots & \vdots \\ \omega_{m1} & \cdots & \omega_{mn} \end{pmatrix}.$$

We want $\delta_{2k}(A) < 1/3$ w.h.p.:

- Show $||Ax||_2 \approx ||x||_2$ w.v.h.p. for fixed $x \in \mathbb{R}^n$
- For each k-dimensional subspace in Σ_k :
 - Find points x_i "covering" \mathbb{S}^{k-1}
 - Show $||Ax_i||_2 \approx ||x_i||_2 \implies ||Az||_2 \approx ||z||_2$ on \mathbb{S}^{k-1}
- Finish by union bound

• Show $||Ax||_2 \approx ||x||_2$ w.v.h.p. for fixed $x \in \mathbb{R}^n$

Assume
$$\|x\|_2 = 1$$
. Then for $0 < \delta < 1$,
$$\mathbb{P}\left(\left|\|Ax\|_2^2 - 1\right| \ge \delta\right)$$
$$= \mathbb{P}\left(\left|(\omega_{11}x_1 + \cdots)^2 + \cdots + (\omega_{m1}x_1 + \cdots)^2 - m\right| \ge \delta m\right)$$
$$= \mathbb{P}\left(\left|\omega_1^2 + \cdots + \omega_m^2 - m\right| \ge \delta m\right)$$
$$\stackrel{?}{\le} 2\exp(-C\delta^2 m)$$

Proposition

Let
$$\omega_1, \ldots, \omega_m \sim \mathcal{N}(0,1)$$
 and $0 < \delta < 1$. Then
$$\frac{\mathbb{P}\left(\omega_1^2 + \cdots + \omega_m^2 \ge (1+\delta)m\right)}{\mathbb{P}\left(\omega_1^2 + \cdots + \omega_m^2 \le (1-\delta)m\right)} \le \exp\left(-\frac{m}{2}\left(\frac{\delta^2}{2} - \frac{\delta^3}{3}\right)\right).$$

$$\mathbb{E} \exp(\lambda \omega^2) = 1/\sqrt{1 - 2\lambda}$$

$$\mathsf{LHS}_+ = \mathbb{P} \left(\exp(\lambda(\omega_1^2 + \dots + \omega_m^2 - (1 + \delta)m)) \ge 1 \right)$$

$$\leq \mathbb{E} \exp(\lambda(\omega_1^2 + \dots + \omega_m^2 - (1 + \delta)m))$$

$$= (1 - 2\lambda)^{-m/2} \exp(-\lambda(1 + \delta)m)$$

$$= (1 + \delta)^{m/2} \exp(-\frac{\delta}{2}m) \qquad \left(\lambda = \frac{\delta}{2(1 + \delta)}\right)$$

$$= \exp\left(-\frac{m}{2}(\delta - \ln(1 + \delta))\right) \le \mathsf{RHS}.$$

• Show $||Ax||_2 \approx ||x||_2$ w.v.h.p. for fixed $x \in \mathbb{R}^n$

Assume
$$\|x\|_2 = 1$$
. Then for $0 < \varepsilon < 1$,
$$\mathbb{P}\left(\left|\|Ax\|_2^2 - 1\right| \ge \delta\right)$$
$$= \mathbb{P}\left(\left|(\omega_{11}x_1 + \cdots)^2 + \cdots + (\omega_{m1}x_1 + \cdots)^2 - m\right| \ge \delta m\right)$$
$$= \mathbb{P}\left(\left|\omega_1^2 + \cdots + \omega_m^2 - m\right| \ge \delta m\right)$$
$$< 2\exp(-C\delta^2 m),$$

where we may take C = 1/12.

Step 2a

• Find points x_i "covering" $\mathbb{S}^{k-1} \subseteq \mathbb{R}^k$

Proposition

There is a set $S \subseteq \mathbb{S}^{k-1}$ of 9^k points such that

$$\min_{x_i \in S} \|z - x_i\|_2 \le \frac{1}{4} \quad \text{for all } z \in \mathbb{S}^{k-1}. \tag{*}$$

Pick maximal $x_1, x_2, \dots x_N \in \mathbb{S}^{k-1}$ with

$$||x_i - x_j||_2 > 1/4$$
 for all $j < i$.

Then $S = \{x_1, \dots, x_N\}$ satisfies (*).

 $B(x_i, 1/8)$ pairwise disjoint and all contained in B(0, 9/8):

$$N \text{Vol}(B(0, 1/8)) \le \text{Vol}(B(0, 9/8)) \implies N \le 9^k$$
.

Step 2b

• Show $||Ax_i||_2 \approx ||x_i||_2 \implies ||Az||_2 \approx ||z||_2$ on \mathbb{S}^{k-1}

Proposition

Take $S \subseteq \mathbb{S}^{k-1}$ as before, and let

$$\sup_{x_i \in S} \left| \|Ax_i\|_2^2 - 1 \right| = \delta/2, \qquad \sup_{z \in \mathbb{S}^{k-1}} \left| \|Az\|_2^2 - 1 \right| = \gamma.$$

Then $\gamma \leq \delta$.

$$\left|\|Au\|_2^2-\|u\|_2^2
ight|\leq \gamma\|u\|_2^2$$
 for all $u\in\mathbb{R}^k$, so

$$|\langle Au, Av \rangle - \langle u, v \rangle| \le \gamma ||u||_2 ||v||_2$$
 for all $u, v \in \mathbb{R}^k$.

For any $z \in \mathbb{S}^{k-1}$, take $x_i \in S$ with $||z - x_i||_2 \le 1/4$:

$$\left| \|Az\|_{2}^{2} - 1 \right| = \left| \|Ax_{i}\|_{2}^{2} - 1 + \langle A(z + x_{i}), A(z - x_{i}) \rangle - \langle z + x, z - x \rangle \right|$$

$$\leq \delta/2 + \gamma \|z + x\|_{2} \|z - x\|_{2} \leq \delta/2 + \gamma/2.$$

Finish by union bound.

We win if $||Ax_i||_2 \approx ||x_i||_2$ for all $x_i \in S$ for all subspaces in Σ_k .

$$\mathbb{P}(\delta_k(A) > \delta) \le \binom{n}{k} (9^k) (2 \exp(-C(\delta/2)^2 m))$$

$$\le \exp\left(k \ln(\frac{en}{k}) + k \ln 9 + \ln 2 - \frac{C\delta^2}{4} m\right).$$

Theorem

There exists an absolute C' > 0 such that if

$$m \ge C' \delta^{-2} (k \ln(en/k) + \ln(2/\varepsilon)),$$

then with
$$A = \frac{1}{\sqrt{m}} (\omega_{ij})_{i,j=1}^{m,n}$$
,

$$\mathbb{P}(\delta_{k}(A) < \delta) > 1 - \varepsilon.$$

Stability and robustness

Is ℓ_1 -minimisation:

- stable, when x is only compressible (close to Σ_k)?
- robust, when y = Ax + e with noise $||e||_2 < \eta$?

Replace (P_1) with

$$\min_{z} \|z\|_{1}$$
 with $\|Az - y\|_{2} \le \eta$ $(P_{1,\eta})$

Definition

 $A \in \mathbb{R}^{m \times n}$ has $\ell_2 RNSP_k(\rho, \tau)$ if for all $T \subseteq [n]$ of size k,

$$\|v_T\|_2 \leq \frac{\rho \|v_{T^c}\|_1}{\sqrt{k}} + \tau \|Av\|_2.$$

Stability and robustness

Proposition

A has $\ell_2 RNSP_k(\rho, \tau) \implies (P_{1,\eta})$ has solution z with

$$||z - x||_2 \le \frac{C}{\sqrt{k}} \inf_{\hat{x} \in \Sigma_k} ||\hat{x} - x||_1 + D\eta$$

with C, D > 0 depending only on ρ, τ .

Proposition

If $\delta_{2k}(A) < 1/3$, then A has $\ell_2 RNSP_k(\rho, \tau)$, with ρ, τ depending only on $\delta_{2k}(A)$.

Contents

1. Compressed sensing

2. Matrix completion

The Netflix Prize (2006-2009)

- $n_1 = 1.8 \times 10^4$ movies
- $n_2 = 5 \times 10^5$ users
- 10⁸ ratings (1%)
- Challenge: predict 3×10^6 unknown ratings

Low rank assumption, singular value decomposition:

 $\Omega \subseteq [n_1] \times [n_2]$: sampling operator $\mathcal{R}_{\Omega} : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^{n_1 \times n_2}$ Recommender systems, global positioning, . . .

Coherence

Coupon collector: $|\Omega|$ needs to be $O(n_2 \ln n_2)$

$$M = \begin{pmatrix} x_1 & x_2 & \cdots & x_{n_2} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} : |\Omega| \text{ needs to be } O(n_1 n_2)!$$

Coherence

Definition

For a subspace $U \subseteq \mathbb{R}^n$ of dimension r, the *coherence of U* is

$$\frac{n}{r}\max_{i}\|\mathbf{P}_{U}\mathbf{e}_{i}\|_{2}^{2}.$$

eg. If $\mathbf{e}_i \in U$, then coherence = n/r.

eg. If U spanned by $(\pm 1/\sqrt{n}, \dots, \pm 1/\sqrt{n})$, then coherence = 1.

Definition (Incoherence assumptions)

A0: RS(M) and CS(M) have coherences $\leq \mu_0$.

A1: The entries of **UV*** are $\leq \mu_1 \sqrt{r/n_1 n_2}$ in absolute value.

Review: matrix analysis

Let $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n_1 \times n_2}$.

- Singular values $\sigma_1(\mathbf{X}) \geq \sigma_2(\mathbf{X}) \geq \cdots \geq 0$ (eigenvalues of $\sqrt{\mathbf{X}^*\mathbf{X}}$)
- Inner product $\langle \mathbf{X}, \mathbf{Y} \rangle = \mathsf{Tr}(\mathbf{X}^*\mathbf{Y})$
- Frobenius norm $\|\mathbf{X}\|_F = \langle \mathbf{X}, \mathbf{X} \rangle^{1/2}$
- Spectral norm $\|\mathbf{X}\| = \sigma_1(\mathbf{X}) = \max\{\|\mathbf{X}\mathbf{x}\|_2 : \|\mathbf{x}\|_2 = 1\}$
- Nuclear norm $\|\mathbf{X}\|_* = \sum_k \sigma_k(\mathbf{X})$

The main problem

Assume that $|\Omega| = m$ is chosen uniformly.

$$\label{eq:min_rank} \mathop{\mathsf{min}}_{\boldsymbol{X}} \mathop{\mathsf{rank}}(\boldsymbol{X}) \qquad \text{with} \quad \mathcal{R}_{\Omega}\boldsymbol{X} = \mathcal{R}_{\Omega}\boldsymbol{\mathsf{M}}$$

$$\min_{\mathbf{X}} \|\mathbf{X}\|_{*} \quad \text{with} \quad \mathcal{R}_{\Omega}\mathbf{X} = \mathcal{R}_{\Omega}\mathbf{M} \qquad (P_{*})$$

Theorem (Recht 2011)

If M satisfies A0 and A1, $\beta > 1$, and

$$m \ge 32 \max(\mu_1^2, \mu_0) r(n_1 + n_2) \beta \ln^2(2n_2),$$

then (P_*) has unique solution $\mathbf{X} = \mathbf{M}$ with probability at least

$$1 - 6(n_1 + n_2)^{2-2\beta} \ln(n_2) - n_2^{2-2\sqrt{\beta}}.$$

Concentration bounds

Proposition (Bernstein inequality)

Let X_1, \ldots, X_L be independent zero-mean random variables, with $|X_k| \leq M$. Let $\rho_k^2 = \mathbb{E}(X_k^2)$. Then for any t > 0,

$$\mathbb{P}\left(\left|\sum_{k=1}^L X_i\right| > t\right) \leq 2 \exp\left(\frac{-t^2/2}{\sum_{k=1}^L \rho_k^2 + Mt/3}\right).$$

Proposition (Noncommutative Bernstein inequality)

Let $\mathbf{X}_1, \ldots, \mathbf{X}_L$ be independent zero-mean random $d_1 \times d_2$ matrices, with $\|\mathbf{X}_k\| \leq M$. Let $\rho_k^2 = \max(\|\mathbb{E}\mathbf{X}_k\mathbf{X}_k^*\|, \|\mathbb{E}\mathbf{X}_k^*\mathbf{X}_k\|)$. Then for any t > 0,

$$\mathbb{P}\left(\left\|\sum_{k=1}^{L}\mathbf{X}_{i}\right\|>t\right)\leq\left(d_{1}+d_{2}\right)\exp\left(\frac{-t^{2}/2}{\sum_{k=1}^{L}\rho_{k}^{2}+Mt/3}\right).$$

The dual problem

The *subdifferential* of $\|\cdot\|_*$ at **M** is

$$\partial \|\mathbf{M}\|_* = \{\mathbf{Y} \,:\, \|\mathbf{M}\|_* = \langle \mathbf{Y}, \mathbf{M} \rangle \text{ and } \|\mathbf{Y}\| \leq 1\}.$$

Proposition

If there exists $\mathbf{Y} \in \mathsf{Ran}(\mathcal{R}_{\Omega}) \cap \partial \|\mathbf{M}\|_*$, then (P_*) has unique solution $\mathbf{X} = \mathbf{M}$.

For all $\mathbf{Z} \in \ker(\mathcal{R}_{\Omega})$, we have $\|\mathbf{M} + \mathbf{Z}\|_* \ge \langle \mathbf{M} + \mathbf{Z}, \mathbf{Y} \rangle = \|\mathbf{M}\|_*$.

Proposition

 $\mathbf{Y} \in \partial \|\mathbf{M}\|_* \iff \mathbf{Y} = \mathbf{U}\mathbf{V}^* + \mathbf{W}$, where $\|\mathbf{W}\| \le 1$, $\mathsf{CS}(\mathbf{W}) \perp \mathsf{CS}(\mathbf{U})$, and $\mathsf{RS}(\mathbf{W}) \perp \mathsf{RS}(\mathbf{V}^*)$.

Hence for some $\mathbb{R}^{n_1 \times n_2} = T \oplus T^{\perp}$,

$$\mathcal{P}_{\mathcal{T}}(\mathbf{Y}) = \mathbf{U}\mathbf{V}^*, \quad \|\mathcal{P}_{\mathcal{T}^{\perp}}(\mathbf{Y})\| \leq 1.$$

Proof sketch

We need the following to hold w.h.p.:

$$\frac{n_1 n_2}{m} \left\| \mathcal{P}_T \mathcal{R}_{\Omega} \mathcal{P}_T - \frac{m}{n_1 n_2} \mathcal{P}_T \right\| \leq \frac{1}{2}, \qquad \|\mathcal{R}_{\Omega}\| \leq \frac{8}{3} \sqrt{\beta} \ln(n_2),$$

and there exists $\mathbf{Y} \in \mathsf{Ran}(\mathcal{R}_{\Omega})$ with

$$\|\mathcal{P}_{\mathcal{T}}(\mathbf{Y}) - \mathbf{U}\mathbf{V}^*\|_F \leq \sqrt{\frac{r}{2n_2}}, \qquad \|\mathcal{P}_{\mathcal{T}^\perp}(\mathbf{Y})\| < \frac{1}{2}.$$

Candès-Recht 2009: Decoupling on first 4 terms of infinite series Candès-Tao 2009: Intensive combinatorial analysis, $O(\ln n_2)$ terms

Final step (Recht 2011)

Sample Ω with replacement, take \mathcal{R}_{Ω} with multiplicity.

References

- H. Boche, et al.
 - "A Survey of Compressed Sensing." *Compressed Sensing and its Applications*, edited by H. Boche, et al. Birkhäuser Basel, 2015, pp. 1–37.
- ► E. Candès, B. Recht. "Exact Matrix Completion via Convex Optimization." Found. of Comput. Math., 9(6), 2009, pp. 717–772.
- ► E. Candès, J. Romberg, T. Tao.

 "Robust Uncertainty Principles: Exact Signal Reconstruction
 From Highly Incomplete Frequency Information."

 IEEE Trans. Inform. Theory, 52, 2006, pp. 489–509.
- B. Recht.
 "A Simpler Approach to Matrix Completion."
 J. Mach. Learn. Res., 12, 2011, pp. 3413–3430.