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The problem with cameras

When you take a picture:
e Make ~ 107 measurements
e Change basis (discrete cosine, wavelet, etc.)
o Take largest ~ 10° components

What if measurement is expensive?

Infrared cameras sensor cost
Astronomy data bandwidth, power limit
Medical imaging exposure, time
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Data: k-sparse vector x € 2, CR"

Measurement:  dot product (aj, x)

Set of measurements: matrix product Ax, A€ R™*"

Main Problem
Given k < n, find measurement matrix A € R™*" (m < n) such
that any x € X, can be efficiently recovered from Ax.

Need A injective on X, ie.
{0} = ker(A) N (X — Zk)
= ker(A) N Lok
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Example (Candés-Romberg-Tao 2006)

;o | Y \

x = Logan-Shepp phantom A = 50x undersampling
(frequency domain)
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Example (Candés-Romberg-Tao 2006)

x = Logan-Shepp phantom z = fp-minimisation

min || z]|o with Az = Ax (Po)
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Example (Candés-Romberg-Tao 2006)

x = Logan-Shepp phantom z = {>-minimisation

min || z||2 with Az = Ax (P2)
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Example (Candés-Romberg-Tao 2006)

x = Logan-Shepp phantom z = {1-minimisation

min ||z with Az = Ax (P1)
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Null Space Property

For T C [n], let v1 be v projected onto coordinates in T.

Definition
A € R™*" has NSPy if for all v € ker A\{0}, and T C [n] of size k,

lvrlls < [lvrells:

(ie. largest k coordinates of v contains less than half the mass)

A has NSP, <= (P1) has unique solution z = x for all x € ¥.

(<) Avr = A(=vre), so [[vr|l1 < [[—vrells.
(=): x € Xk supported on T, with Ax = Az:

Ixllx < llx = z7lls + [lz7[l2
<G = 2)7elly + [lzr [l = [12]1-
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Restricted Isometry Property

Definition

Restricted isometry constant 0x(A): minimal such that

IAx]13 = [IX[3] < llx|3  for all x € %4

Note that 0 < 01(A) < d2(A) < --- < 6k(A).

Proposition

|(Ax, Az) — (x, z)| < dak||x]|2]|2]|2 for all x,z € L.

Assume that ||x]]2 = ||z||2 = 1. Then

s — |14Gc+ 2)IB ~ A= 2)IF _ e+ 2[5 ~ l1x — I3
4 4
<tz MBI _ gy

Ang Yan Sheng The Compressed Sensing Paradigm 5/23



Compressed sensing
Matrix completion

Restricted Isometry Property

If 91 (A) < 1/3, then A has NSPy.

Fix v € ker A, To C [n] the k largest entries in v,
T1 C [n] the k largest entries in vre,
T2 C [n] the k largest entries in v(7,uT)e, - - -
Note that 0 = Av = Avy, + Avy, +---, so
(]- - 51()”‘/7—0“% < HAVTo”% = <AVT07 _(AVTI + AVTz +e )>

<Y A, Avr)| < Saullvrlla Y v Iz

j>1 j>1

Vi vrll2 < kZmax|v,\ <> Z lvil = llv]lx

j>1 j>1 Jj>11eT;_

ok HVHl
Ivrolls < Vk|vrll2 < T3 vl < ==
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Strategy

Let w;jj ~ N(0,1), and

Wil . Win
A= —
vm

Wmi - Wmn

We want d2x(A) < 1/3 w.h.p.:

@ Show [|Ax|2 = [|x]||2 w.v.h.p. for fixed x € R"
@ For each k-dimensional subspace in X:
o Find points x; “covering” Sk—1
o Show [|Axi|l2 = ||Ixi|2 = ||Az||2 = ||z|2 on SK~!

@ Finish by union bound
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@ Show ||Ax||2 & ||x||2 w.v.h.p. for fixed x € R"

Assume ||x||2 = 1. Then for 0 < § < 1,
P (lIAxI2 - 1] > 5)
=P (|(wixa+--- )2+ + (wmxs + -+ )° = m| > 6m)
=P (Jwf+ - +wl—m|>3dm)

?
< 2exp(—Cé%m)
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Step 1

Proposition

Let wi,...,wm ~ N(0,1) and 0 < 6 < 1. Then

P(w? + - +w? > (1+35)m) m (5% &3
P(w%+~--+w,2,,§ (1—5)m)} =P <_ <_)>
Eexp(Aw?) = 1/v/1 — 2\

LHS, =P (exp(A(wf + - - + w3, — (1 + §)m)) > 1)
< Eexp(Mw$ + - +wh — (14 )m))
= (1=2))"™2 exp(=A(1 + &)m)

= (1+ 6)m/? exp(—gm) (’\: 2(1(15)>

= exp (-%(5 —In(1+ 5))) < RHS.
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Step 1

@ Show || Ax||2 =~ [|x]|2 w.v.h.p. for fixed x € R”
Assume ||x||2 = 1. Then for 0 < e < 1,
P(IAxIE - 1] > )
=P (J(wia+- )2+ + (Wmx + ) —m| >3dm)
=P(|wi+- - +wh—m|>dm)
< 2exp(—Cd2m),
where we may take C = 1/12.
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Step 2a

e Find points x; “covering” Sk—1 C Rk

Proposition

There is a set S C Sk~1 of 9 points such that

1
min ||z — xj||2 < i for all z € S¥71. (*)

Xi

Pick maximal xi, xo, ... xy € SK~1 with
i — xjll2 > 1/4 forall j < i.

Then S = {x1,...,xy} satisfies ().
B(xi, 1/8) pairwise disjoint and all contained in B(0,9/8):

N Vol(B(0,1/8)) < Vol(B(0,9/8)) — N < 9.
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Step 2b

o Show [|Axill2 = ||xill2 == [|Az]l2 ~ [lz]|2 on S¥~

Proposition

Take S C Sk—1 as before, and let

sup }HAX,-H%—l‘ =4/2, sup ‘HAZH%—].‘ =7.
X;€ES zeSk—1

Then v < 6.

A0l — lul3] < yllul} for all u € R¥, s0
[(Au, Av) — (u, v)| < 7llull2]]v||2 for all u, v € R¥.
For any z € SK71, take x; € S with ||z — x| < 1/4:
[1Az||5 — 1] = [||Axi]13 — 1+ (A(z + x;), A(z — ;) — (z + x,z — X)|
<0/2 491z + x[l2llz = x[l2 < 6/2 + /2.
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Step 3

@ Finish by union bound.

We win if ||Ax;i||2 = ||xi||2 for all x; € S for all subspaces in .
POA) > 0) < () 04) 2ol C(o/2Pm)

Cé2
<exp | kin( k)+k|n9+|n2—Tm

Theorem

There exists an absolute C' > 0 such that if
m > C'62(kln(en/k) + In(2/¢)),

then with A = T(wu)u 10

P(5,(A) < 8) > 1.
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Stability and robustness

Is £1-minimisation:
@ stable, when x is only compressible (close to X x)?
@ robust, when y = Ax + e with noise ||e|2 < 7n?
Replace (P1) with

min{lz[p  with [[Az —y[l2 <7 (PLy)

Definition

A € R™*" has l,RNSPy(p, 7) if for all T C [n] of size k,

pllvrells

lvrll2 < 7k + 7] Av]f2.
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Stability and robustness

A has loRNSP(p,7) = (P1,) has solution z with

c . "
Iz = xll2 < 2 inf 12— x| +Dn

with C, D > 0 depending only on p, .

| A

Proposition
If 92k (A) < 1/3, then A has l2RNSPy(p, T), with p, T depending
only on (Szk(A)
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The Netflix Prize (2006—-2009)

@ np = 1.8 x 10* movies

@ ny =5 x 10° users

o 108 ratings (1%)

o Challenge: predict 3 x 108 unknown ratings

Low rank assumption, singular value decomposition:

users factors
users
(73] (7] w
2 9 s .
3 M =3l U |X| X |X3g Vv
1S £ N
ny X np ny Xr r Xr r X np

Q C [m] x [n2]: sampling operator Rq : R™*™ — RM*M
Recommender systems, global positioning, ...
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Coupon collector: Q2| needs to be O(n2 In ny)

X1 X2 N Xn2
0 0 --- 0

M=1 . . | 19| needs to be O(nyny)!
0 O 0
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Coherence

Definition

For a subspace U C R” of dimension r, the coherence of U is

n
— max ||Pye;f3.
r i

eg. If e; € U, then coherence = n/r.
eg. If U spanned by (£1/y/n,...,£1/y/n), then coherence = 1.

Definition (Incoherence assumptions)

A0: RS(M) and CS(M) have coherences < po.
A1l: The entries of UV* are < pj+/r/niny in absolute value.
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Review: matrix analysis

Let X,Y € RMm*",
@ Singular values 01(X) > 02(X) > --- >0
(eigenvalues of v/X*X)
@ Inner product (X,Y) = Tr(X*Y)
e Frobenius norm ||X||r = <X,X>1/2
@ Spectral norm ||X|| = o1(X) = max{||Xx|2 : ||x|l2 =1}
@ Nuclear norm || X[, = >, ok(X)
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The main problem

Assume that |Q| = m is chosen uniformly.

m)én rank(X) with  RoX = RqoM

mXin 1| X]]« with RoX = RoM (Py)

Theorem (Recht 2011)
If M satisfies A0 and Al, 8 > 1, and

m > 32 max (3, o) r(ny + n2)B1n%(2ny),

then (P,) has unique solution X = M with probability at least

1—6(n + m)? % In(ny) — ng_Z\/B.
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Concentration bounds

Proposition (Bernstein inequality)

Let Xi,...,X. be independent zero-mean random variables, with
|Xk| < M. Let p7 = E(X?). Then for any t >0,

L 2
—t/2
P( >t>§2exp< T 2/ )
> k=1P% + Mt/3

> %
Proposition (Noncommutative Bernstein inequality)

k=1

Let X1,...,X. be independent zero-mean random dy x da
matrices, with | Xk|| < M. Let p3 = max(||[EXx Xz, [|[EX;X]|).
Then for any t > 0,

L 2
—t%/2
P E Xi|| >t §(d1+d2)exp( )
( e > > ko1 03+ Mt/3
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The dual problem

The subdifferential of || - || at M is
O[MIl. = {Y : [M[l. = (Y, M) and |Y] < 1}.

Proposition

If there exists Y € Ran(Rq) N J||M
solution X = M.

«, then (P.) has unique

For all Z € ker(Rgq), we have M+ Z||, > (M + Z,Y) = |M|..

Proposition

Y € 0||M|, < Y =UV*+ W, where |[W| <1,
CS(W) L CS(U), and RS(W) L RS(V*).

Hence for some RM*m™ = T @ T+,

Pr(Y)=UV", [Pro(Y)| <1
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Proof sketch

We need the following to hold w.h.p.:

1 8
<3 IRall < SVBin(n)

e e

and there exists Y € Ran(Rq) with

* r 1
IPrN =UV'e < 5 1Pl <.

Candes-Recht 2009: Decoupling on first 4 terms of infinite series
Candes-Tao 2009: Intensive combinatorial analysis, O(In ny) terms

Final step (Recht 2011)
Sample Q with replacement, take R with multiplicity.
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