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Thanks to the contributions of Gauss, Riemann, Grassmann, Poincaré, Cartan,
and many others, we now have a comprehensive classical theory of differential ge-
ometry. The most famous use of this theory might be in Einstein’s theory of general
relativity, but even today, differential geometry sees substantial applications in di-
verse areas such as computational biology, computer graphics, industrial design,
and architecture—in short, any field which requires some form of digital geometry
processing.

Of course, a computer does not directly work with smooth surfaces or differ-
ential forms, but with certain finite, discrete approximations of such objects, such
as meshes. However, discretising the smooth objects and concepts of classical dif-
ferential geometry poses some nontrivial problems. Crane and Wardetzky (2017)
describe a “game” which is often played in this context:

1. Start with several equivalent definitions in the smooth setting;
2. Apply each definition to an object in the discrete setting;
3. Analyse the trade-offs among these (usually inequivalent) discrete definitions.

In this report, I will look at some instances of this phenomenon, also known as
the no free lunch scenario, and highlight some of the results in the area of discrete
differential geometry, which attempts to study the link between discrete geometric
structures and their smooth counterparts.

Curvature

As a first example, we consider the curvature of a smooth plane curve γ :

[0, L]→ R2. Assuming that γ is parametrised by arc length, its unit tangent vector

is given by T(t) := γ ′(s), and its unit normal byN(s) :=

(
0 −1

1 0

)
T(s), ie. obtained

by rotating T counterclockwise by 90◦. Then the (signed) curvature of γ is

κ(s) := 〈N(s), T ′(s)〉.

Here we see a problem with transferring this definition directly to a polygonal
curve γ1γ2 · · ·γn: its arc length parametrisation is not twice-differentiable. How-
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ever, there are other methods of defining discrete curvature, by using other char-
acterisations of κ.

Tangential angle Note that T : [0, L]→ S1 ∼= R/2πZ can be lifted to a continuous
function ϕ : [0, L] → R, the tangential angle that T makes with the positive x-axis,
which is unique up to a multiple of 2π. Now it is easy to show that curvature is
the rate of change of the tangential angle, so∫b

a

κ(s)ds = ϕ(b) −ϕ(a).

The concept of tangential angle also makes sense for a polygonal curve, and so we
have a first definition of discrete curvature at a vertex:

κAi := θi := ∠(γi − γi−1, γi+1 − γi) ∈ (−π, π),

with angle measured counterclockwise from the first vector to the second. With
this definition, we have a discrete analog of the Gauss-Bonnet theorem for planar
curves, namely ∫L

0

κ(s)ds = 2π −→
n∑
i=1

κAi = 2π,

for simple positively-oriented smooth curves (left) or polygonal curves (right).

Length variation Another characterisation of κ is given by the following: for
any smooth function η : [0, L] → R2 such that η(0) = η(L) = 0, the variation of the
arc length of γ is given by

d

dε

∣∣∣∣
ε=0

∫L
0

‖(γ+ εη) ′(s)‖ds = −

∫L
0

〈(η(s), κ(s)N(s)〉ds.

Hence the variation that results in the fastest decrease in arc length is given by
η(s) = κ(s)N(s).

For polygonal curves, we can also look at the variation of L =
∑n−1
i=1 ‖γi+1−γi‖:

∇γiL =
γi − γi−1
‖γi − γi−1‖

−
γi+1 − γi
‖γi+1 − γi‖

= −2 sin(θi/2)Ni,

whereNi is the unit vector in the direction of the internal angle bisector of ∠γi−1γiγi+1.
This gives a second notion of discrete curvature,

κBi := 2 sin(θi/2).

Alternatively, we can use the corollary

d

dε

∣∣∣∣
ε=0

∫b
a

‖(γ+ εN) ′(s)‖ds = −

∫b
a

κ(s)ds.

We obtain the discrete analog of this operation by moving each edge of the polyg-
onal curve outwards by ε. Depending on whether we connect the ends of the new
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edges by (A) circular arcs, (B) line segments, or (C) extending the edges to their in-
tersection, we recover the two previous definitions of discrete curvature and obtain
a third,

κAi = θi, κBi = 2 sin(θi/2), κCi := 2 tan(θi/2).

Osculating circles The usual geometric intuition behind curvature is that of the
osculating circle, which agrees with the curve at a given point up to second order.
In the discrete setting, we can consider the circumcircle of a given vertex and its
two adjacent vertices, which gives rise to yet another discrete curvature,

κDi :=
1

Ri
=

2 sin θi
‖γi+1 − γi−1‖

.

We note that κA, κB, κC are invariant under scaling, while κD varies inversely pro-
portionally to the scaling factor, which is exactly the case for the usual curvature
κ. This can be interpreted as saying that the first three discrete curvatures are “in-
tegrated” quantities, while the last one is a “pointwise” quantity.

Figure 1: A summary of the four discrete curvatures.

Which of the above
is the “best” discretisa-
tion? Given a polygonal
curve that converges (in
the appropriate sense) to
a smooth curve, we can
recover the usual smooth
curvature from each of the
four discrete curvatures
(with appropriate scaling).
Therefore we need to con-
sider other properties, such
as conserved quantities.

Figure 2: The smooth (left) and discrete (right) curve-
shortening flows.

For instance, consider
the problem of modelling
the curve-shortening flow,
where each point on the
curve moves with veloc-
ity κN (Figure 2). It is
known that if we start with
a smooth simple closed
curve, the curve-shortening
flow satisfies the following
properties:

– the flow preserves the total curvature 2π;
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– the flow preserves the centre of mass;
– the curve limits to a circle (after rescaling); and
– the curve remains simple (Gage-Grayson-Hamilton theorem).
To discretise this system, we can numerically solve d

dt
γi = κiNi, for instance

by the iteration
γi(t+ τ) = γi(t) + τκi(t)Ni(t)

for a fixed time step τ > 0. Here Ni is unit vector along the internal angle bisector
of the two adjacent edges for κA, κB, or along the circumradius for κD. The results
of such a simulation are summarised in Figure 3.

Figure 3: Three discrete curve-shortening flows, and their conserved quantities.

We have already seen that the flow under κA preserves total curvature, and it
is easy to see (by summing the definition over all vertices) that the flow under κB

preserves the centre of mass. It can also be shown that the limiting shape of the
flow under κD is a cyclic polygon. However, no single discrete curvature satis-
fies all three properties. Moreover, for a given time step τ, none of the flows can
guarantee that the polygonal curve stays simple. This is one example of the no
free lunch scenario, and so the correct choice of discretisation depends on the most
relevant conserved quantity for the problem.

Exterior calculus

To state our next example in a coordinate-free formulation, we will need to
introduce some notions from exterior calculus.

Musical isomorphisms Recall that in Rn, there are canonical isomorphisms
(the musical isomorphisms) between TpRn and T∗pRn, given by∑

i

αi
∂

∂xi
[−−−−⇀↽−−−−
]

∑
i

αidx
i.
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Consider a surface S embedded in R3, with chart f : U ⊆ S → R2. The embed-
ding in R3 induces a metric tensor on R2 by gp(u, v) = 〈df−1(u), df−1(v)〉. By the
uniformisation theorem for Riemann surfaces, we may assume that f is conformal;
hence we may transfer the musical isomorphisms to S via

u[ := det(gp)f∗(df(u)[), α] := det(gp)−1df−1((f−1)∗(α)])

for all u ∈ TpS, α ∈ T∗pS. We can check that the above expressions are well-defined
under conformal transition maps. In particular, we have identities corresponding
to the Rn case, such as u[(v) = 〈u, v〉.

Hodge duality Since the vector space of k-forms and (n−k)-forms on Rn have
the same dimension, one might suspect that there is some duality relation between
them. Indeed, we can define the Hodge star operator by the relation

α∧ ∗β = 〈〈α,β〉〉ω

for any two k-forms α,β, where ω = dx1 ∧ · · · ∧ dxn is the volume form, and
〈〈α,β〉〉 :=

∑
i αiβi is the inner product on k-forms. This gives the relation

∗(dxi1 ∧ · · ·∧ dxik) = dxik+1 ∧ · · ·∧ dxin ,

for any even permutation (i1, . . . , in) of (1, . . . , n).
We can also transfer this concept to a Riemannian n-manifold, by replacing the

volume form with ω :=
√

det(gp)dx1 ∧ · · · ∧ dxn. In particular, the Hodge star
operator is defined on surfaces embedded in R3.

Example: Vector calculus on R3 To showcase the notions that we have intro-
duced, let us derive coordinate-free definitions of the gradient, curl and divergence
operators from vector calculus on R3.

Let ϕ : R3 → R be a scalar field (ie. 0-form). Its exterior derivative is just the
differential dϕ =

∑
i
∂ϕ
∂xi
dxi. Comparing with the gradient ∇ϕ =

∑
i
∂ϕ
∂xi

∂
∂xi

, we
see that the only difference is that the first is a 1-form while the second is a vector
field. Hence ∇ϕ = (dϕ)].

Let X =
∑
i α
i ∂
∂xi

be a vector field on R3, with associated 1-form X[ = α =∑
i αidx

i. Then the exterior derivative of α is

dα =
∑
i,j

∂αj

∂xi
dxi ∧ dxj

=

(
∂α3

∂x2
−
∂α2

∂x3

)
dx2 ∧ dx3

+

(
∂α1

∂x3
−
∂α3

∂x1

)
dx3 ∧ dx1

+

(
∂α2

∂x1
−
∂α1

∂x2

)
dx1 ∧ dx2.
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Note that the components are exactly the same as the curl of X, but since dα is a

2-form while∇× X is a vector field, we have ∇× X = (∗dX[)].

Also, note that

∗X[ = X1dx
2 ∧ dx3 + X2dx

3 ∧ dx1 + X3dx
1 ∧ dx2,

which has exterior derivative

d(∗X[) =
∑
i

∂Xi

∂xi
dx1 ∧ dx2 ∧ dx3.

Hence the divergence of X is ∇ · X = ∗d ∗ X[.

The Laplacian For a scalar fieldϕ, the Laplacian ofϕ is defined as∆ϕ := ∇·∇ϕ,
ie. the divergence of the gradient. By the discussion above, we may write this as
∆ϕ = ∗d ∗ dϕ.

The Laplace-Beltrami operator

Note that the expression ∆ϕ = ∗d ∗ dϕ still makes sense for arbitrary Rie-
mannian manifolds, where it defines the (scalar) Laplace-Beltrami operator on scalar
fields∗.

Proposition (Green’s first identity). Let M be a Riemannian n-manifold, and ϕ,ψ :

M→ R be scalar fields. Then∫
M

〈∇ϕ,∇ψ〉 =
∫
∂M

〈N,∇ϕ〉ψ−

∫
M

ψ∆ϕ,

where N is the outward unit normal ofM.

Proof. By Stokes’ theorem on the (n− 1)-form ψ ∗ dϕ, we have∫
∂M

ψ ∗ dϕ =

∫
M

d(ψ ∗ dϕ)

=

∫
M

dψ∧ ∗dϕ+

∫
M

ψd ∗ dϕ

=

∫
M

dψ∧ ∗dϕ+

∫
M

ψ ∗ ∆ϕ

=

∫
M

〈〈dψ, dϕ〉〉ω+

∫
M

〈〈ψ,∆ϕ〉〉ω

=

∫
M

〈∇ϕ,∇ψ〉+
∫
M

ψ∆ϕ.

∗More generally, the k-form Laplacian is defined as ∆ := ∗d ∗ d + d ∗ d∗, but the second term is
zero for scalar fields (since every (n+ 1)-form on an n-manifold is zero).
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Now if ω∂ is the volume form on ∂M, then ω = N[ ∧ ω∂ is the volume form on
M. But

N[ ∧ ∗dϕ = 〈〈N[, dϕ〉〉ω = 〈N,∇ϕ〉ω,
so ∗dϕ = 〈N,∇ϕ〉ω∂ since ∗dϕ is a multiple of ω∂. Hence the LHS of the first
equation is

∫
∂M
〈N,∇ϕ〉ψ, and we are done.

Suppose that S is a surface embedded in R3, and we are givenϕ0 : ∂S→ R. For
many applications, we would like to find the “smoothest” interpolating function
ϕ : S → R which extends ϕ0. One natural measure of such “smoothness” is the
Dirichlet energy

E(ϕ) =

∫
S

‖∇ϕ‖2.

To find the minimiser of this functional, we calculate the gradient of E. Ifψ : S→ R
is a variation function, so that ψ = 0 on ∂S, then

‖∇(ϕ+ εψ)‖2 = ‖∇ϕ‖2 + 2ε〈∇f,∇g〉+O(ε2),

so
E(ϕ+ εψ) = E(ϕ) − 2ε

∫
S

ψ∆ϕ+O(ε2).

Hence if ϕ is a minimiser for E, then ∆ϕ = 0 on S. Such functions are called
harmonic functions on S.

More generally, if we want to minimise the functional

EX(ϕ) =

∫
S

‖∇ϕ− X‖2,

where X is a vector field on S, then proceeding as above, we get

EX(ϕ+ εψ) = EX(ϕ) − 2ε

∫
S

(ψ∆ϕ+ 〈X,∇ψ〉) +O(ε2)

= EX(ϕ) − 2ε

∫
S

ψ(∆ϕ−∇ · X) +O(ε2),

by the divergence theorem. Hence ϕ is a solution to ∆ϕ = ρ, with ρ = ∇ ·X. This
is the ubiquitous Poisson problem.

In practice, interpolation with the Laplace-Beltrami operator can be used on
positions, displacements, vector fields, and other functions. These can be incor-
porated into more advanced applications, such as surface parametrisation, vector
field design, shape matching and reconstruction, geodesic distance computation,
and fluid dynamics. The eigenfunctions of this operator also play an important
role in geometric processing—in fact, Fourier analysis on Rn and spherical har-
monics are just two special cases of this powerful tool.

On the other hand, for a discretisation of a surface, such as a polygonal mesh, it
is far from clear how to obtain an analogue of the Laplace-Beltrami operator with
the corresponding properties. We now present two different ways of achieving
this discretisation; surprisingly, they yield the same result!
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Finite element method For scalar fields ϕ,ψ : S → R, define the L2 inner
product 〈ϕ,ψ〉 :=

∫
S
ϕψ, and write ‖ϕ‖ = 〈ϕ,ϕ〉1/2.

Consider a Poisson problem ∆ϕ = ρ. Let fi be a set of basis functions, and
suppose that ϕ is a linear combination of the fi. If we want ϕ to be a good approx-
imation to the solution, in the sense that ‖∆ϕ−ρ‖ is small, then a natural condition
to consider is

〈∆ϕ− ρ, fi〉 = 0 for all i.

Figure 4: Unit normals across an edge sum to zero.

Assume that S has no boundary.
Then for a triangular mesh of S, we
can split the first term of the above
expression into a sum over trian-
gles σk, then apply Green’s iden-
tity:

〈∆ϕ, fi〉 =
∑
k

〈∆ϕ, fi〉σk

=
∑
k

(〈∇ϕ,∇fi〉σk + 〈N · ∇ϕ, fi〉∂σk).

Now the second term vanishes since each edge of the mesh is traversed twice,
and the unit normals cancel each other out (Figure 4).

Writing ϕ =
∑
j λjfj, we then get a linear system of equations∑

j

λj〈∇fi,∇fj〉 = 〈ρ, fi〉 for all i,

ie. it remains to solve Ax = b for the symmetric matrix Aij = 〈∇fi,∇fj〉.

Figure 5: The basis functions fi.

Given a triangular mesh, we have a conve-
nient choice of basis: the piecewise linear hat
functions fi, which is 1 at the vertex vi and 0 at
all other vertices (Figure 5). Now it is an easy
exercise in trigonometry to show that:

– In a triangle with vertex vi, 〈fi, fi〉 =

(cotα+cotβ)/2, where α,β are the angles
at the other two vertices;

– In a triangle with edge vivj, 〈fi, fj〉 =

− cot θ/2, where θ is the angle opposite
the edge vivj.

Note that with our choice of basis functions, we have λj = ϕ(vj). Thus

〈∆ϕ, fi〉 =
∑
j

λj〈∇fi,∇fj〉

=
1

2

∑
j∼i

(cotαj + cotβj)(ϕ(vi) −ϕ(vj)),

8



where the angles are as indicated in Figure 6. This is the so-called cotan formula for
the discrete Laplacian.

Figure 6: Angles in the cotan formula.

Discrete exterior calculus We now take an-
other approach to discretising the Laplacian,
by first looking at how to discretise differen-
tial forms. This essentially involves integrating
forms over elements of the mesh.

For example, a 1-form α can be represented
by its integrals over all edges in the mesh, ie.
the numbers α̂e :=

∫
e
α. (Note that we need to

first fix an orientation for each edge.) More gen-
erally, a k-form that has been integrated over all

(oriented) k-dimensional cells of a simplicial mesh is called a discrete differential k-
form.

Figure 7: The discrete exterior
derivative d̂.

In this context, the discrete exterior derivative d̂ is
almost trivial to define, by Stokes’ theorem. Since∫
Ω
dα =

∫
∂Ω
α, we see that summing a discrete

differential k-form (corresponding to α) over all
boundary components of a (k+ 1)-cell gives the in-
tegral of a (k+1)-form (namely, dα) over that cell—
in other words, a discrete differential (k + 1)-form
corresponding to dα.

To illustrate, suppose we have a discrete differ-
ential 1-form α̂ on the simplicial mesh shown in Figure 7. Then the discrete differ-
ential 2-form d̂α̂ is given by

(d̂α̂)1 = α̂1 + α̂2 + α̂3,

(d̂α̂)2 = α̂4 + α̂5 − α̂2.

Figure 8: Elements of a dual mesh.

Note that in general, any set of
numbers assigned to the oriented k-
cells of a simplicial mesh can be consid-
ered as a discrete differential k-form, ie.
not every discrete differential form has
to come from a continuous one.

There is also a discrete analog of
the Hodge star, known as the diagonal
Hodge star ∗̂, which takes k-cells in the
original (primal) mesh to (n − k)-cells
in a dual mesh (Figure 8). Since we want

the “density” of the dual form to be the same as that of the primal form, we scale
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the values of the form by the volume ratio:

∗̂α̂i :=
|σ∗i |

|σi|
α̂i,

where |σi|, |σ
∗
i | denote the volumes of the primal and dual cells respectively.

Figure 9: The discrete
Laplacian. (Note thatu in this
figure is ϕ in the text.)

Returning to the Poisson equation, we will trans-
fer the Laplace-Beltrami operator to discrete differential
forms by writing ∆ϕ = ∗d ∗ dϕ = ρ. This process is
illustrated in Figure 9.

Starting with the 0-form ϕ, we get a discrete 0-form
ϕ̂, which assigns a number ϕi := ϕ(vi) to every vertex.
Then d̂ϕ̂ assigns the number (d̂ϕ̂)ij = ϕj − ϕi to ev-
ery directed edge vivj. Taking the diagonal Hodge star
gives

(∗̂d̂ϕ̂)ij =
|e∗ij|

|eij|
(ϕj −ϕi),

and the next exterior derivative sums along the bound-
ary of the dual cell to yield

(d̂∗̂d̂ϕ̂)i =
∑
j∼i

|e∗ij|

|eij|
(ϕj −ϕi).

A final Hodge star will divide the above expression by
the area of the dual cell |Ci|, but it is customary to move
that to the RHS to yield ∑

j∼i

|e∗ij|

|eij|
(ϕj −ϕi) = |Ci|ρi,

with ρi := ρ(vi). As before, this is a system of linear equations where the matrix is
symmetric.

Figure 10: Choosing circumcentres as
dual vertices.

The lengths |e∗ij| depend on the choice of
dual mesh. One popular option is to choose the
dual vertices at the circumcentres of the primal
faces (Figure 10), even though this runs into is-
sues with very obtuse triangles. In this case, the
dual edges are the perpendicular bisectors of
the primal edges, and a short calculation gives

|e∗ij|

|eij|
=
1

2
(cotαj + cotβj).

Plugging this back into the previous equation,
we recover the cotan formula for the Laplacian.
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Remark: Laplacian linear systems We note that under some mild conditions,
the linear systems that are involved in the discrete Poisson problem are not only
symmetric, but Laplacian matrices—named for their connection to the Laplacian
operator—with nonnegative entries on the diagonal and nonpositive entries off the
diagonal, and with entries summing to 0 in every row. Moreover, these matrices
are sparse, since most of its entries are 0.

Besides in geometric processing, Laplacian linear systems have applications in
other areas such as graph drawing and learning functions on graphs. Thus it was
a major theoretical breakthrough when in 2004, Spielman and Teng announced
a nearly-linear time algorithm to solve sparse Laplacian systems. The field has
steadily progressed since then, and now the best known algorithm can solve a
Laplacian system faster than we can sort its nonzero entries!

Conclusion

Mathematics finds itself becoming increasingly relevant to other areas of scien-
tific research, especially in this age of computation. Conversely, in the search for
a theoretical framework underlying applied problems, new areas of mathematical
research such as numerical analysis, numerical linear algebra, information theory,
and many others have spawned and grown.

The field of discrete differential geometry is a beautiful example of this trend.
Beyond the broad scope of its applications, perhaps equally important are the new
perspectives it brings to a classical subject. It is at such cross-junctions of ideas that
I feel that mathematics is always fresh, always young, and always alive.
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