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The central driving force behind topology are questions of classification. What
are the different possible topological spaces (satisfying certain conditions)? How
do we distinguish them? The study of even the easiest cases of such questions has
given us powerful algebraic tools to tell different objects apart; the classification
of closed surfaces by Euler characteristic is a familiar example.

In the same spirit, we may ask: What are the different ways of imbedding X
into Y ? One of the simplest interesting cases, where X = S1 and Y = R3, gives
rise to the study of knot theory, the subject of the 1963 text Introduction to Knot
Theory by Richard Crowell and Ralph Fox. In this report, I will examine the ideas
in topology that have contributed to progress towards this classification question.

Chapter 1 is an introduction to knots and knot
types. Firstly, in order to turn the idea of a knot into
a topological object, we must define what it means
for two knots to be equivalent to each other. This
is hard if the ends of the knot are free (top), so we
close up the knot into a loop (bottom).

Now intuitively we know that the knot on the
left (the trefoil knot) cannot be physically deformed into the knot on the right (the
figure-eight knot), and neither can be deformed into a flat circle (the unknot).
Since all knots are homeomorphic to S1, and thus to each other, we need a
stronger concept of knot equivalence. This is achieved by stipulating that two
knots K1, K2 are equivalent if one can be isotopically deformed into the other,
ie. there exists a family of homeomorphisms ht : R3 → R3, t ∈ [0, 1], such that
h0 = idR3 , H(t, p) = ht(p) is continuous in both t and p, and h1(K1) = K2.
Crowell and Fox state that this is equivalent to the existence of an orientation-
preserving homeomorphism mapping K1 to K2, though rigorous treatment of this
idea requires homology theory and is omitted.

To rule out pathological possibili-
ties, we usually restrict our attention
to tame knots, ie. those that are equiv-
alent to a polygonal knot. For example,
the knot pictured on the left is smooth

everywhere except at p, and can “clearly” be untied by pulling on loops from the
right. However, it can be shown to be not tame in the above sense, and will be



excluded from our discussion. In fact, all curves which are continuously differ-
entiable in the arc length parametrisation are tame, so we don’t usually run into
“wild” knots like the one pictured.

In Chapter 2, we are introduced to the
concept of the fundamental group of a
space as an important topological invari-
ant. For a fixed point p ∈ X , two loops
a, b : [0, 1]→ X with initial and final point
p are said to be equivalent if there is a con-
tinuous family hs (s ∈ [0, 1]) of loops in
X with initial and final point p, such that
h0 = a and h1 = b. For instance, the figure on the right shows two loops a1, a2
which are equivalent to the constant loop e, while a3, a4 are equivalent to each
other but not to e, since (intuitively) they wind once around the hole in X .

The text proves that the set of equivalence classes of p-based loops forms a
group, called the fundamental group �(X , p) of X relative to basepoint p, with
multiplication given by path concatenation, and inverse given by path reversal.
Furthermore, if X is path-connected then this group is independent of the choice
of basepoint, so we may write �(X ) for the fundamental group of X .

Since we have no other topological tools at our disposal, calculating the fun-
damental group of a space by hand is quite tedious in general. It is easy to show
that convex sets have trivial fundamental group. However, Crowell and Fox spend
5 pages proving that �(S1) ∼= Z, using the fact that R is a covering space for
S1 ∼= R=Z.

Actually, with a bit of complex analysis, we can formulate a shorter proof of
the above fact using winding numbers: the key is to show that
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for any ‘well-behaved’ (eg. piecewise smooth) loop  on the unit circle in C, and
then using  to approximate any continuous loop on the unit circle.

Chapters 3 and 4 give an account of free groups and group presentations,
which is outside of the scope of this report. However, one notable theorem that is
used later on is the Tietze theorem on group presentations, which states that any
presentation of a group (in terms of generators and relations) can be converted to
any other presentation by a series of elementary operations, each either adding or
removing a single generator or relation.

Chapter 5 is concerned with the explicit
calculation of fundamental groups. It starts
off with some examples of spaces which in-
tuitively should have isomorphic fundamen-
tal groups (see figure). To prove this rigor-
ously, the text develops the theory of how



the fundamental group behaves under various topological transformations. For
instance, a map from X to a subspace Y is called a retraction if its restriction to
Y is the identity map. A deformation of X into Y is a family of maps hs : X → X
(s ∈ [0, 1]) such that h0 = idX , H(s, p) = hs(p) is continuous in both s and p, and
h1(X ) ⊆ Y . The main result concerning these transformations is the following:

Proposition. Let X be path-connected, and let Y be a subspace of X . If X can
be deformed into Y and there exists a retraction X → Y , then �(X ) ∼= �(Y ).

We say that two topological spaces have the same homotopy type if they are
related to each other by a finite sequence of homeomorphisms and deformation
retractions. Now it is easy to check that the three example spaces at the start of
the chapter are all of the same homotopy type, which proves that their fundamental
groups are isomorphic. In fact, most invariants that appear in algebraic topology
(such as the fundamental group) are invariants of homotopy type, rather than
topological equivalence.

Next, we have a modern statement of the van Kampen theorem, essentially
as a universal property of the fundamental group of a space with respect to the
fundamental group of its parts:

Theorem. Let X be a topological space, and let X1, X2 be open subsets such that
X = X1∪X2, and that X1, X2 and X0 = X1∩X2 are path-connected and nonempty.
Let G = �(X ) and Gi = �(Xi). If the inclusion maps induce homomorphisms in
the following commutative diagram:

G0

G1 G2

G

�1 �2

!0

!1 !2

Then !1(G1) and !2(G2) generate G .
Furthermore, if H is any group, and  i : Gi → H are homomorphisms such

that the following diagram commutes:

G0

G1 G2

H

�1 �2

 0

 1  2

Then there exists a unique homomorphism � : G → H such that  i = � ◦ !i .

This can be seen as the rigorous statement of the intuitive idea that G is the freest
possible group that extends G1 and G2, subjected to natural restrictions posed by
G0. Hence we obtain G by ‘gluing’ together the groups G1 and G2 ‘along’ the
homomorphisms �1 and �2. The classical statement of van Kampen’s theorem,
involving group presentations, is derived as a corollary to the above formulation.



With all these new tools, we finally return
to knot theory in Chapter 6. The big idea is
that for any knot K , �(R3\K ) only depends on
the knot type of K . In this chapter, Crowell
and Fox describe a standard way of calculating
a presentation for this group.

Firstly, we partition a polygonal knot draw-
ing of K into n overpasses (bold lines in figure)
and n underpasses (light lines). We can imag-
ine that the bold segments are the parts of the
knot above the xy -plane, and the light segments are the parts below.

Fix a point p0 high above the xy -plane.
Now for any path a on the xy -plane not in-
tersecting the knot K , we can associate a word
a] to the path, based on the (oriented) cross-
ings between the path and the overpasses of
the knot. This word then corresponds to a loop
based at p0 (see figure). Hence we can get n
generators for the group �(R3\K ).

Now it turns out that the only nontrivial
relations in this group are induced by situations

such as in the diagram below, where we pull out the dashed loop from below the
underpass strand and contract it to a point. Each such loop gives us one relation
for each underpass, so we get n relations in total, and it can be shown that exactly
one of these relations is redundant. Hence we have a method to get a presentation
for �(R3\K ) with n generators and n − 1 relations.

This is sufficient, for in-
stance, to prove that the tre-
foil knot is not equivalent to
the unknot: the trefoil knot
group has an homomorphism
onto the symmetric group of 3
elements, which is nonabelian,
while the unknot group is just
Z. However, the word problem
(deciding whether two group
presentations yield isoorphic groups) is undecidable in general, so the procedure
given above is not a computationally feasible method to decide whether two knots
are equivalent.

Now we want to extract knot invariants from the knot group which are more
suited to the problem of distinguishing knots, ie. easier to calculate. This is the aim
of the rest of the book, which presents constructions for more algebraic structures



over the knot group, such as the group ring, derivations, elementary ideals, and
the knot polynomials. These are beyond the scope of this report. However, we
note that Crowell and Fox give an example of a pair of inequivalent knots which
have the same fundamental group; hence the algebraic methods presented in this
book will sometimes fail to detect distinct knots.

It is interesting to keep track of the developments in knot theory since the
publication of the book. The end goal of Crowell and Fox’s text is to describe
the Alexander polynomial, which is the state-of-the-art in knot invariants at the
time. In the late 1960s, John Conway discovered a simple relation between the
Alexander polynomials of certain knots, now known as skein relations. This led
to further developments in the 1980s, such as the Jones polynomial by Vaughan
Jones, culminating in the HOMFLY polynomial which generalises both of the above
knot polynomials.

Another research direction in the late 1970s to the 1980s was the introduction
of geometry. William Thurston proved that for any knot K , the complement R3\K
can be equipped with a hyperbolic geometry. This perspective on the problem
yields entirely new knot invariants, such as the hyperbolic volume of the knot
complement, a positive real that can be computed to arbitrary precision. This
provides new algorithmic approaches to distinguish between different knots.

In summary, we have started from a purely topological question (classifying
inequivalent knots), and converted it into a study of algebraic objects, in this
case the fundamental group. The problem can then be attacked via algebraic
methods, which leads to new insight for the original problem in topology. In my
view, it is exactly at such boundaries between different fields—where seemingly
unrelated ideas can merge, and provide deeper understanding towards a problem—
it is exactly at the boundaries where mathematics is the most alive.
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